Cite this article as:

Gao-yong Lin, Xin Tan, Di Feng, Jing-li Wang, and Yu-xia Lei, Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp.1013-1019. https://dx.doi.org/10.1007/s12613-019-1815-8
Gao-yong Lin, Xin Tan, Di Feng, Jing-li Wang, and Yu-xia Lei, Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 8, pp.1013-1019. https://dx.doi.org/10.1007/s12613-019-1815-8
引用本文 PDF XML SpringerLink

Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy

摘要: The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al-13Si-7.5Cu-1Mg alloy were investigated. The microstructures of alloys before and after conform processing and aging were compared by transmission electron microscopy and scanning electron microscopy, respectively. The results reveal that the primary phases were broken and refined by intense shear deformation during conform processing. After the conform-prepared Al-13Si-7.5Cu-1Mg alloy was subjected to solid-solution treatment at 494℃ for 1.5 h and aging at 180℃ for 4 h, its hardness improved from HBS 115.8 to HBS 152.5 and its ultimate tensile strength increased from 112.6 to 486.8 MPa. Its wear resistance was also enhanced. The factors leading to the enhanced strength, hardness, and wear resistance of the alloy were discussed in detail.

 

Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy

Abstract: The effects of conform continuous extrusion and subsequent heat treatment on the mechanical and wear-resistance properties of high-alloying Al-13Si-7.5Cu-1Mg alloy were investigated. The microstructures of alloys before and after conform processing and aging were compared by transmission electron microscopy and scanning electron microscopy, respectively. The results reveal that the primary phases were broken and refined by intense shear deformation during conform processing. After the conform-prepared Al-13Si-7.5Cu-1Mg alloy was subjected to solid-solution treatment at 494℃ for 1.5 h and aging at 180℃ for 4 h, its hardness improved from HBS 115.8 to HBS 152.5 and its ultimate tensile strength increased from 112.6 to 486.8 MPa. Its wear resistance was also enhanced. The factors leading to the enhanced strength, hardness, and wear resistance of the alloy were discussed in detail.

 

/

返回文章
返回