留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 9
Sep.  2019
数据统计

分享

计量
  • 文章访问数:  632
  • HTML全文浏览量:  124
  • PDF下载量:  7
  • 被引次数: 0
Yang Sun, Yong Li, Li-xin Zhang, Shi-ming Li, Ming-wei Yan,  and Jia-lin Sun, Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1177-1185. https://doi.org/10.1007/s12613-019-1829-2
Cite this article as:
Yang Sun, Yong Li, Li-xin Zhang, Shi-ming Li, Ming-wei Yan,  and Jia-lin Sun, Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2, Int. J. Miner. Metall. Mater., 26(2019), No. 9, pp. 1177-1185. https://doi.org/10.1007/s12613-019-1829-2
引用本文 PDF XML SpringerLink
研究论文

Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2

  • 通讯作者:

    Yong Li    E-mail: lirefractory@vip.sina.com

  • An Al-AlN core-shell structure is beneficial to the performance of Al-Al2O3 composites. In this paper, the phase evolution and microstructure of Al-Al2O3-TiO2 composites at high temperatures in flowing N2 were investigated after the Al-AlN core-shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti (~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows:Al3Ti reacts with C and other carbides (Al4C3 and Al4O4C) to form TiCx (x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.
  • Research Article

    Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2

    + Author Affiliations
    • An Al-AlN core-shell structure is beneficial to the performance of Al-Al2O3 composites. In this paper, the phase evolution and microstructure of Al-Al2O3-TiO2 composites at high temperatures in flowing N2 were investigated after the Al-AlN core-shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti (~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows:Al3Ti reacts with C and other carbides (Al4C3 and Al4O4C) to form TiCx (x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.
    • loading
    • [1]
      E.M.M. Ewais, Carbon based refractories, J. Ceram. Soc. Jpn., 112(2004), No. 1310, p. 517.
      [2]
      T.B. Zhu, Y.W. Li, S.B. Sang, and Z.P. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets, Mater. Des., 124(2017), p. 16.
      [3]
      W. Yang, X.H Wang, L.F. Zhang, Q.L. Shan, and X.F. Liu, Cleanliness of low carbon aluminum-killed steels during secondary refining processes, Steel Res. Int., 84(2013), No. 5, p. 473.
      [4]
      C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al-Si-Al2O3, sliding gate with functional gradient feature, Ceram. Int., 44(2018), No. 6, p. 6384.
      [5]
      C. Atzenhofer, S. Gschiel, and H. Harmuth, Phase formation in Al2O3-C refractories with Al addition, J. Eur. Ceram. Soc., 37(2016), No. 4, p. 1805.
      [6]
      P. Jiang, J.L. Sun, W.D. Xue, J.H. Chen, R.V. Kumar, and Y. Li, New synthetic route to Al4O4C reinforced Al-Al2O3 composite materials, Solid State Sci., 46(2015), p. 33.
      [7]
      M.W. Yan, Y. Li, H.Y. Li, and J.L. Sun, Theoretical analysis and synthesis of Al4O4C and Al2CO phase in the resin bonded Al-Al2O3 refractory in N2-flowing, Ceram. Int., 44(2017), No. 2, p. 1493.
      [8]
      S. Zhang and A. Yamaguchi, Hydration resistances and reactions with CO of Al4O4C and Al2OC formed in carbon-containing refractories with Al, J. Ceram. Soc. Jpn., 104(1996), No. 1209, p. 393.
      [9]
      C.A. Qiu and R. Metselaar, Thermodynamic evaluation of the Al2O3-Al4C3 system and stability of Al-oxycarbides, Z. Metallkd., 86(1995), No. 3, p. 198.
      [10]
      E.L. Amma and G.A. Jeffrey, Structure of aluminum oxycarbide Al2OC:a short-range wurtzite super-structure, J. Chem. Phys., 34(1961), No. 1, p. 252.
      [11]
      J.M. Lihrmann, J. Tirlocq, P. Descamps, and F. Cambier, Thermodynamics of the Al-C-O system and properties of SiC-AlN-Al2OC composites, J. Eur. Ceram. Soc., 19(1999), No. 16, p. 2781.
      [12]
      J.M. Lihrmann, Thermodynamics of the Al2O3-Al4C3 system:I. Thermochemical functions of Al oxide, carbide and oxycarbides between 298 and 2100 K, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 633.
      [13]
      J.M. Lihrmann, Thermodynamics of the Al2O3-Al4C3 system:Ⅱ. Free energies of mixing, solid solubilities and activities, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 643.
      [14]
      J.M. Lihrmanm, Thermodynamics of the Al2O3-Al4C3 system:Ⅲ. Equilibrium vapour pressures and activation energies for volatilization, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 649.
      [15]
      J.M. Lihrmann, T. Zambetakis, and M. Daire, High-temperature behavior of the aluminum oxycarbide Al2OC in the system Al2O3-Al4C3 and with additions of aluminum nitride, J. Am. Ceram. Soc., 72(1989), No. 9, p. 1704.
      [16]
      S.Y. Kuo and A.V. Virkar, Phase equilibria and phase transformation in the aluminum nitride-aluminum oxycarbide pseudobinary system, J. Am. Ceram. Soc., 72(1989), No. 4, p. 540.
      [17]
      K. Motzfeldt, Comment on "Thermodynamics of the Al-C-O ternary system"[J. Electrochem. Soc. 153, E119(2006)], J. Electrochem. Soc., 154(2007), No. 3, p. S1.
      [18]
      K. Cheng, C. Yu, J. Ding, C.J. Deng, H.X. Zhu, and Z.L. Xue, Synthesis and characterization of AlN whiskers by nitridation of Al4O4C, J. Alloys Compd., 719(2017), p. 308.
      [19]
      K. Cheng, C.J. Deng, J. Ding, C. Yu, and H.X. Zhu, Synthesis of Al2O3 nanowires by heat-treating Al4O4C in a carbon-containing environment, Ceram. Int., 44(2017), No. 5, p. 4996.
      [20]
      Y.B. Li, Y. Bando, and D. Golberg, Single-crystalline α-Al2O3 nanotubes converted from Al4O4C nanowires, Adv. Mater., 17(2005), No. 11, p. 1401.
      [21]
      H.G. Zhu, Y.L. Jiang, Y.Q. Yao, J.Z. Song, J.L. Li, and Z.H. Xie, Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures, Mater. Chem. Phys., 137(2012), No. 2, p. 532.
      [22]
      T.D. Xia, T.Z. Liu, W.J. Zhao, B.Y. Ma, and T.M. Wang, Self-propagating high-temperature synthesis of Al2O3-TiC-Al composites by aluminothermic reactions, J. Mater. Sci., 36(2001), No. 23, p. 5581.
      [23]
      Y.M.Z. Ahmed, Z.I. Zaki, D.H.A. Besisa, A.M.M Amin, and R.K. Bordia, Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique, Mater. Sci. Eng. A, 696(2017), p. 182.
      [24]
      A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Mechanochemical carboaluminothermic reduction of rutile to produce TiC-Al2O3, nanocomposite, Adv. Powder Technol., 25(2014), No. 1, p. 423.
      [25]
      R. Yamanoglu, N. Gulsoy, E.A. Olevsky, and H.O. Gulsoy, Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering, J. Alloys Compd., 680(2016), p. 654.
      [26]
      A. Rajabi, M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review, Mater. Des., 67(2015), p. 95.
      [27]
      M.W. Yan, Y. Li, J.J. Wang, H.Y. Li, Y. Sun, and C.H. Ma. Phase evolution mechanism of non-oxide bonded Al-Al2O3-MgO-ZrO2 composites at 1873K in flowing nitrogen, J. Am. Ceram. Soc., 101(2017), No. 5, p. 2162.
      [28]
      U.R. Kattner, J.C. Lin, and Y.A Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metall. Trans. A, 23(1992), No. 8, p. 2081.
      [29]
      M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple, Intermetallics., 32(2013), p. 297.
      [30]
      M. Sujata, S. Bhargava, and S. Sangal. On the formation of TiAl3 during reaction between solid Ti and liquid Al, J. Mater. Sci. Lett., 16(1997), No. 13, p. 1175.
      [31]
      M.Z. Mehrizi, R. Beygi, and G. Eisaabadi, Synthesis of Al/TiC-Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment, Ceram. Int., 42(2016), No. 7, p. 8895.
      [32]
      M.W. Chase Jr, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, Washington DC, 1998.
      [33]
      Y.F. Qin, G.F. Zheng, L.Y. Zhu, J.N. He, F.Y. Zhang, Y.C. Dong, and F.C. Yin, Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying, Surf. Coat. Technol., 342(2018), p. 137.
      [34]
      A. Kostov, B. Friedrich, and D. Zivkovic, Predicting thermodynamic properties in Ti-Al binary system by FactSage, Comput. Mater. Sci., 37(2006), No. 3, p. 355.
      [35]
      N.J. Ashley, R.W. Grimes, and K.J. McClellan, Accommodation of non-stoichiometry in TiN1-x, and ZrN1-x, J. Mater. Sci., 42(2007), No. 6, p. 1884.
      [36]
      Z. Dridi, B. Bouhafs, P. Ruterana, and H. Aourag, First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx, J. Phys. Condens. Matter, 14(2002), No. 43, p. 10237.

    Catalog


    • /

      返回文章
      返回