留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 10
Oct.  2019
数据统计

分享

计量
  • 文章访问数:  684
  • HTML全文浏览量:  147
  • PDF下载量:  22
  • 被引次数: 0
Amir Hossein Baghdadi, Zainuddin Sajuri, Nor Fazilah Mohamad Selamat, Mohd Zaidi Omar, Yukio Miyashita,  and Amir Hossein Kokabi, Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1285-1298. https://doi.org/10.1007/s12613-019-1834-5
Cite this article as:
Amir Hossein Baghdadi, Zainuddin Sajuri, Nor Fazilah Mohamad Selamat, Mohd Zaidi Omar, Yukio Miyashita,  and Amir Hossein Kokabi, Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1285-1298. https://doi.org/10.1007/s12613-019-1834-5
引用本文 PDF XML SpringerLink
研究论文

Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys

  • 通讯作者:

    Amir Hossein Baghdadi    E-mail: baghdadi.amirhossein@gmail.com

    Zainuddin Sajuri    E-mail: zsajuri@ukm.edu.my

  • Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds (IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17 (γ) and Al3Mg2 (β) at the welding zone with a thickness (< 3.5 µm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
  • Research Article

    Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys

    + Author Affiliations
    • Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds (IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17 (γ) and Al3Mg2 (β) at the welding zone with a thickness (< 3.5 µm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
    • loading
    • [1]
      B.L. Fu, G.L. Qin, F. Li, X.M. Meng, J.Z. Zhang, and C.S. Wu, Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy, J. Mater. Process. Technol., 218(2015), p. 38.
      [2]
      P. Venkateswaran, Z.H. Xu, X.D. Li, and A.P. Reynolds, Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods, J. Mater. Sci., 44(2009), No. 15, p. 4140.
      [3]
      A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, and A. Imad, Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061, Mater. Sci. Eng. A, 651(2016), p. 720.
      [4]
      H.Y. Wang, L.M. Liu, M.L. Zhu, and H. Wang, Laser weld bonding of A6061Al alloy to AZ31B Mg alloy, Sci. Technol. Weld. Joining, 12(2007), No. 3, p. 261.
      [5]
      P. Liu, Y.J. Li, H.R. Geng, and J. Wang, Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials, Mater. Lett., 61(2007), No. 6, p. 1288.
      [6]
      W.S. Liu, L.P. Long, Y.Z. Ma, and L. Wu, Microstructure evolution and mechanical properties of Mg/Al diffusion bonded joints, J. Alloys Compd., 643(2015), p. 34.
      [7]
      R. Borrisutthekul, Y. Miyashita, and Y. Mutoh, Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O, Sci. Technol. Adv. Mater., 6(2005), No. 2, p. 199.
      [8]
      T.T. Zhang, W.X. Wang, W. Zhang, Y. Wei, X.Q. Cao, Z.F. Yan, and J. Zhou, Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding, J. Alloys Compd., 735(2018), p. 1759.
      [9]
      X.B. Liu, F.B. Qiao, L.J. Guo, and X.E. Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 164.
      [10]
      Z.W. Ma, Y.Y. Jin, S.D. Ji, X.C. Meng, L. Ma, and Q.H. Li, A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding, J. Mater. Sci. Technol., 35(2019), No. 1, p. 94.
      [11]
      D. Wu, J. Shen, M.B. Zhou, L. Cheng, and J.X. Sang, Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1169.
      [12]
      J.H. Dong, C. Gao, Y. Lu, J. Han, X.D. Jiao, and Z.X. Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024–T3 aluminum alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 171.
      [13]
      A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, and M.Z. Omar, Effect of post-weld heat treatment on mechanical behaviour and dislocation density of FSWed Al 6061, Mater. Sci. Eng. A, 754(2019), p. 728.
      [14]
      M. Azizieh, A.S. Alavijeh, M. Abbasi, Z. Balak, and H.S. Kim, Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds, Mater. Chem. Phys., 170(2016), p. 251.
      [15]
      V. Firouzdor and S. Kou, Al-to-Mg friction stir welding: Effect of material position, travel speed, and rotation speed, Metall. Mater. Trans. A, 41(2010), No. 11, p. 2914.
      [16]
      Y. Zhao, Z.P. Lu, K. Yan, and L.Z. Huang, Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys, Mater. Des., 65(2015), p. 675.
      [17]
      P. Pourahmad and M. Abbasi, Materials flow and phase transformation in friction stir welding of Al 6013/Mg, Trans. Nonferrous Met. Soc. China, 23(2013), No. 5, p. 1253.
      [18]
      X.C. Meng, Y.Y. Jin, S.D. Ji, and D.J. Yan, Improving friction stir weldability of Al/Mg alloys via ultrasonically diminishing pin adhesion, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1817.
      [19]
      Z.L. Liu, X.C. Meng, S.D. Ji, Z.W. Li, and L. Wang, Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding, J. Manuf. Processes, 31(2018), p. 552.
      [20]
      Z.L. Liu, S.D. Ji, and X.C. Meng, Joining of magnesium and aluminum alloys via ultrasonic assisted friction stir welding at low temperature, Int. J. Adv. Manuf. Technol., 97(2018), No. 9-12, p. 4127.
      [21]
      P. Venkateswaran and A.P. Reynolds, Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys, Mater. Sci. Eng. A, 545(2012), p. 26.
      [22]
      V. Firouzdor and S. Kou, Formation of liquid and intermetallics in Al-to-Mg friction stir welding, Metall. Mater. Trans. A, 41(2010), No. 12, p. 3238.
      [23]
      R. Zettler, A.A M. da Silva, S. Rodrigues, A. Blanco, and J.F. dos Santos, Dissimilar Al to Mg alloy friction stir welds, Adv. Eng. Mater., 8(2006), No. 5, p. 415.
      [24]
      S.D. Ji, R.F. Huang, X.C. Meng, L.G. Zhang, and Y.X. Huang, Enhancing friction stir weldability of 6061-T6 Al and AZ31B Mg alloys assisted by external non-rotational shoulder, J. Mater. Eng. Perform., 26(2017), No. 5, p. 2359.
      [25]
      S.D. Ji, X.C. Meng, Z.L. Liu, R.F. Huang, and Z.W. Li, Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic, Mater. Lett., 201(2017), p. 173.
      [26]
      Y.C. Chen and K. Nakata, Friction stir lap joining aluminum and magnesium alloys, Scripta Mater., 58(2008), No. 6, p. 433.
      [27]
      Y. Gao, Y. Morisada, H. Fujii, and J. Liao, Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer, Mater. Sci. Eng. A, 711(2018), p. 109.
      [28]
      A. Masoudian, A. Tahaei, A. Shakiba, F. Sharifianjazi, and J.A. Mohandesi, Microstructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 5, p. 1317.
      [29]
      S. Malarvizhi and V. Balasubramanian, Influences of tool shoulder diameter to plate thickness ratio (D/T) on stir zone formation and tensile properties of friction stir welded dissimilar joints of AA6061 aluminum–AZ31B magnesium alloys, Mater. Des., 40(2012), p. 453.
      [30]
      M.A. Mofid, A. Abdollah-Zadeh, and F.M. Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy, Mater. Des., 36(2012), p. 161.
      [31]
      T. Morishige, A. Kawaguchi, M. Tsujikawa, M. Hino, T. Hirata, and K. Higashi, Dissimilar welding of Al and Mg alloys by FSW, Mater. Trans., 49(2008), No. 5, p. 1129.
      [32]
      H. Baker and H. Okamoto, ASM Handbook. Vol. 3. Alloy Phase Diagrams, ASM International, United States, 1992, p. 305.
      [33]
      F. Fadaeifard, K.A. Matori, M. Toozandehjani, A.R. Daud, M.K.A.M. Ariffin, N.K. Othman, F. Gharavi, A.H. Ramzani, and F. Ostovan, Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1004.
      [34]
      V. Firouzdor and S. Kou, Al-to-Mg friction stir welding: effect of positions of Al and Mg with respect to the welding tool, Weld. J., 88(2009), No. 11, p. 213.
      [35]
      Y.S. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa, Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys, Scripta Mater., 50(2004), No. 9, p. 1233.
      [36]
      A.C. Somasekharan and L.E. Murr, Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy, Mater. Charact., 52(2004), No. 1, p. 49.
      [37]
      H.M. Rao, J.B. Jordon, B. Ghaffari, X. Su, A.K. Khosrovaneh, M.E. Barkey, W. Yuan, and M. Guo, Fatigue and fracture of friction stir linear welded dissimilar aluminum-to-magnesium alloys, Int. J. Fatigue, 82(2016), p. 737.
      [38]
      X.T. Liu, J.Z. Cui, X.M. Wu, Y.H. Guo, and J. Zhang, Phase growth in diffusion couples under an low frequency alternating magnetic field, Scripta Mater., 52(2005), No. 1, p. 79.
      [39]
      X.T. Liu, J.Z. Cui, Y.H. Guo, X.M. Wu, and J. Zhang, Phase formation and growth in Al–Mg couple with an electromagnetic field, Mater. Lett., 58(2004), No. 9, p. 1520.
      [40]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1.
      [41]
      S.R. Ren, Z.Y. Ma, and L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy, Scripta Mater., 56(2007), No. 1, p. 69.

    Catalog


    • /

      返回文章
      返回