摘要:
NiTi shape memory alloys (SMAs) was developed using the spark-plasma sintering (SPS) process with different average particle size (45 µm and 10 µm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni- and Ti-rich intermetallic such as Ni
3Ti and NiTi
2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 µm particles at 900℃, which exhibited superior corrosion resistance.