Cite this article as: |
Li-xin Qian, Tie-jun Chun, Hong-ming Long, and Qing-min Meng, Detection of the assimilation characteristics of iron ores: Dynamic resistance measurements, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 18-25. https://doi.org/10.1007/s12613-019-1869-7 |
Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase. In view of the insufficiency of existing assimilation detection methods, a timing-of-assimilation reaction is proposed, which was judged by continuously detecting the changes in resistance at the reaction interface. Effects of pole position and additional amounts of iron ore on assimilation reaction timing were investigated. The results showed that the suitable depth of pole groove was about 2 mm, and there was no obvious impact when the distance of the poles changed from 4 to 6 mm, or the amount of iron ore changed from 0.4 to 0.6 g. The temperature of sudden change of resistance in the temperature-resistant image was considered to be the lowest assimilation temperature of iron ore. The accuracy of this resistance method was clarified by X-ray diffraction, optical microscope, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) analyses.
[1] |
Y. Hida, J. Okazaki, K. Itoh, and M. Sasaki, Formation mechanism of acicular calcium ferrite of iron ore sinter, Tetsu-to-Hagané, 73(1987), No. 15, p. 1893. doi: 10.2355/tetsutohagane1955.73.15_1893
|
[2] |
G.L. Zhang, S.L. Wu, B. Su, Z.G. Que, C.G. Hou, and Y. Jiang, Influencing factor of sinter body strength and its effects on iron ore sintering indexes, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 553. doi: 10.1007/s12613-015-1107-x
|
[3] |
Y.Z. Wang, J.L. Zhang, Z.J. Liu, and C.B. Du, Recent advances and research status in energy conservation of iron ore sintering in China, JOM, 69(2017), No. 11, p. 2404. doi: 10.1007/s11837-017-2587-0
|
[4] |
S.L. Wu, G.L. Zhang, S.G. Chen, and B. Su, Influencing factors and effects of assimilation characteristic of iron ores in sintering process, ISIJ Int., 54(2014), No. 3, p. 582. doi: 10.2355/isijinternational.54.582
|
[5] |
D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, and H. Chen, Sintering properties and optimal blending schemes of iron ores, J. Iron Steel Res. Int., 19(2012), No. 6, p. 1. doi: 10.1016/S1006-706X(12)60117-4
|
[6] |
S.L. Wu, D. Oliveira, Y.M. Dai, and J. Xu, Ore-blending optimization model for sintering process based on characteristics of iron ores, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 217. doi: 10.1007/s12613-012-0541-2
|
[7] |
F. Zhang, D.Q. Zhu, J. Pan, Y.P. Mo, and Z.Q. Guo, Improving the sintering performance of blends containing Canadian specularite concentrate by modifying the binding medium, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 598. doi: 10.1007/s12613-018-1607-6
|
[8] |
B.J. Yan, J.L. Zhang, H.W. Guo, L.K. Chen, and W. Li, High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 741. doi: 10.1007/s12613-014-0966-x
|
[9] |
E. Kasai and F. Saito, Note differential thermal analysis of assimilation and melt-formation phenomena in the sintering process of iron ores, ISIJ Int., 36(1996), No. 8, p. 1109. doi: 10.2355/isijinternational.36.1109
|
[10] |
G.S. Li, M.F. Jin, G. Wei, X.G. Li, and F.M. Shen, On wettability of binding phase in fluorine-bearing sinter, Iron Steel, 42(2007), No. 8, p. 12.
|
[11] |
D.H. Liu, J.L. Zhang, Z.J. Liu, Y.Z. Wang, X. Xue, and J. Yan, Effects of iron sand ratios on the basic characteristics of vanadium titanium mixed ores, JOM, 68(2016), No. 9, p. 2418. doi: 10.1007/s11837-016-1989-8
|
[12] |
C.M. Wang, K. Wu, Y. She, Y. Zhao, M. Wang, and R.L. Du, Characterization method for assimilation reactions between iron ores and CaO, J. Univ. Sci. Technol. Beijing, 36(2014), No. 1, p. 14.
|
[13] |
X. Ding and X.M. Guo, The sintering characteristics of mixing SiO2 with calcium ferrite at 1473 K (1200°C), Metal. Mater. Trans. B, 46(2015), No. 4, p. 1742. doi: 10.1007/s11663-015-0348-4
|
[14] |
D.H. Liu, H. Liu, J.L. Zhang, Z.J. Liu, X. Xue, G.W. Wang, and Q.F. Kang, Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 991. doi: 10.1007/s12613-017-1487-1
|
[15] |
C.H.B. Mee, Electrical conductivity and thermoelectric power of calcium oxide, Nature, 190(1961), No. 4781, p. 1093. doi: 10.1038/1901093a0
|
[16] |
J.J. Roberts and J.A. Tyburczy, Partial-melt electrical conductivity: Influence of melt composition, J. Geophys. Res. Solid Earth, 104(1999), No. B4, p. 7055.
|
[17] |
H.J. Engell and P. Vygen, Ionen- und elektronenleitung in CaO–FeO–Fe2O3–SiO2–schmelzen, Berichte der Bunsengesellschaft für physikalische Chemie, 72(1968), No. 1, p. 5. doi: 10.1002/bbpc.19680720104
|
[18] |
S.V. Kravchenko and M.R. Sarachik, Metal–insulator transition in two-dimensional electron systems, Rep. Prog. Phys., 67(2004), No. 1, p. 1. doi: 10.1088/0034-4885/67/1/R01
|
[19] |
L.L. Fan, S. Chen, Y.F. Wu, F.H. Chen, W.S. Chu, X. Chen, C.W. Zou, and Z.Y. Wu, Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy, Appl. Phys. Lett., 103(2013), No. 13, art. No. 131914.
|
[20] |
L.L. Fan, Y.F. Wu, C. Si, G.Q. Pan, C.W. Zou, and Z.Y. Wu, Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains, Appl. Phys. Lett., 102(2013), No. 1, art. No. 011604.
|
[21] |
F.H. Chen, L.L. Fan, S. Chen, G.M. Liao, Y.L. Chen, P. Wu, L. Song, C.W. Zou, and Z.Y. Wu, Control of the metal–insulator transition in VO2 epitaxial film by modifying carrier density, ACS Appl. Mater. Interfaces, 7(2015), No. 12, p. 6875. doi: 10.1021/acsami.5b00540
|
[22] |
S.L. Yang, C.S. Xu, H.S. Chen, and Z.Y. Hu, Suddenly changing of resistance and its stability of industrial VO2 thin films, Chin. J. Nonferrous Met., 12(2002), No. 5, p. 925.
|
[23] |
S.Q. Xu, K. Zhao, C.Q. Gu, H.P. Ma, and J. Fang, Abrupt electrical resistance change of doped VO2 phase transition thin films, J. Chin. Ceram. Soc., 30(2002), No. 5, p. 637.
|
[24] |
D. Martens, Electrode Assembly for Liquid Level Controllers, U.S. Patent, Appl. 3461722, 1969.
|
[25] |
H.L. Hull, Liquid Level Sensing System, U.S. Patent, Appl. 4903530, 1990.
|
[26] |
A. Jungwirth, Method of Measuring the Thickness of A Slag Layer on Metal Baths, U.S. Patent, Appl. 3663204, 1972.
|
[27] |
W. Tenberg and L. Pichert, Ascertaining the Level of the Slag-Liquid-Metal Interface in Metallurgical Vessels, U.S. Patent, Appl. 4413810, 1983.
|
[28] |
J.D. Usher, Refractory Material Sensor for Determining Level of Molten Metal and Slag and Method of Using, U.S. Patent, Appl. 6309442, 2001.
|
[29] |
M. Zhou, T. Jiang, S.T. Yang, and X.X. Xue, Vanadium–titanium magnetite ore blends optimization for sinter strength based on iron ore basic sintering characteristics, Int. J. Miner. Process., 142(2015), p. 125. doi: 10.1016/j.minpro.2015.04.019
|
[30] |
D. Debrincat, C.E. Loo, and M.F. Hutchens, Effect of iron ore particle assimilation on sinter structure, ISIJ Int., 44(2004), No. 8, p. 1308. doi: 10.2355/isijinternational.44.1308
|
[31] |
H.Y. Sun, A.A. Adetoro, F. Pan, Z. Wang, and Q.S. Zhu, Effects of high-temperature preoxidation on the titanomagnetite ore structure and reduction behaviors in fluidized bed, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1898. doi: 10.1007/s11663-017-0925-9
|
[32] |
X. Ding and X.M. Guo, The formation process of silico-ferrite of calcium (SFC) from binary calcium ferrite, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1221. doi: 10.1007/s11663-014-0041-z
|
[33] |
V.C. Kress and I.S.E. Carmichael, The lime–iron–silicate melt system: Redox and volume systematics, Geochim. Cosmochim. Acta, 53(1989), No. 11, p. 2883. doi: 10.1016/0016-7037(89)90165-8
|
[34] |
G. Hwang, M. Kaviany, K. Moriyama, H.S. Park, B. Hwang, M. Lee, E. Kim, J.H. Park, and Y. Nasersharifi, Faro tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment, Nucl. Eng. Des., 305(2016), p. 569. doi: 10.1016/j.nucengdes.2016.05.039
|