留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 26 Issue 12
Dec.  2019
数据统计

分享

计量
  • 文章访问数:  722
  • HTML全文浏览量:  142
  • PDF下载量:  19
  • 被引次数: 0
Sergei Galyshev, Andrew Gomzin, Rida Gallyamova, Igor Khodos, and Fanil Musin, On the liquid-phase technology of carbon fiber/aluminum matrix composites, Int. J. Miner. Metall. Mater., 26(2019), No. 12, pp. 1578-1584. https://doi.org/10.1007/s12613-019-1877-7
Cite this article as:
Sergei Galyshev, Andrew Gomzin, Rida Gallyamova, Igor Khodos, and Fanil Musin, On the liquid-phase technology of carbon fiber/aluminum matrix composites, Int. J. Miner. Metall. Mater., 26(2019), No. 12, pp. 1578-1584. https://doi.org/10.1007/s12613-019-1877-7
引用本文 PDF XML SpringerLink
研究论文

On the liquid-phase technology of carbon fiber/aluminum matrix composites

  • 通讯作者:

    Sergei Galyshev    E-mail: galyshew@gmail.com

  • The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers' surface. This paper aims to solve these problems. The theoretical and experimental dependence of porosity on the applied pressure were determined. The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown. The correlation among the strength of the carbon fiber reinforced aluminum matrix composite, the fracture surface, and the degradation of the carbon fiber surface was discussed.
  • Research Article

    On the liquid-phase technology of carbon fiber/aluminum matrix composites

    + Author Affiliations
    • The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers' surface. This paper aims to solve these problems. The theoretical and experimental dependence of porosity on the applied pressure were determined. The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown. The correlation among the strength of the carbon fiber reinforced aluminum matrix composite, the fracture surface, and the degradation of the carbon fiber surface was discussed.
    • loading
    • [1]
      X. Meng, Y. Choi, K. Matsugi, Z.F. Xu, and W.C. Liu, Microstructures of carbon fiber and hybrid carbon fiber-carbon nanofiber reinforced aluminum matrix composites by low pressure infiltration process and their properties, Mater. Trans., 59(2018), No. 12, p. 1935.
      [2]
      M. Deshpandea, R. Gondila, R. Waikara, S.V.S.N. Murtyb, and T.S. Mahatac, Processing and characterization of carbon fiber reinforced aluminium7075, Mater. Today Proc., 5(2018), No. 2, p. 7115.
      [3]
      J.T. Xiong, H. Zhang, Y. Peng, J.L. Li, and F.S. Zhang, Fabrication and characterization of plasma-sprayed carbon-fiber-reinforced aluminum composites, J. Therm. Spray Technol., 27(2018), No. 4, p. 727.
      [4]
      T.A. Chernyshova, L.I. Kobeleva, P. Shebo, and A.V. Panfilov, Interaction of Metallic Melts with Reinforcing Fillers, Nauka, Moscow, 1993, p. 272.
      [5]
      M.H. Vidal-Setif, M. Lancin, C. Marhic, R. Valle, J.L. Raviart, J.C. Daux, and M. Rabinovitch, On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites, Mater. Sci. Eng. A, 272(1999), No. 2, p. 321.
      [6]
      A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings, Infiltration of fibrous preforms by a pure metal:Part I. Theory. Metall. Trans. A, 20(1989), No. 11, p. 2535.
      [7]
      V.J. Michaud, L.M. Compton, and A. Mortensen, Capillarity in isothermal infiltration of alumina fiber preforms with aluminum, Metall. Mater. Trans. A, 25(1994), No. 10, p. 2145.
      [8]
      L.J. Masur, A. Mortensen, J.A. Cornie, and M.C. Flemings, Infiltration of fibrous preforms by a pure metal:Part II. Experiment, Metall. Trans. A, 20(1989), No. 11, p. 2549.
      [9]
      R.J. Brooks and A.T. Corey, Hydraulic properties of porous media, Colorado State University, Fort Collins, 1964, p. 37.
      [10]
      M. Gude and A. Boczkowska, Textile Reinforced Carbon Fibre/aluminium Matrix Composites for Lightweight Applications, Foundry Research Institute, Cracow, 2014, p. 235.
      [11]
      I. Tzanakis, W.W. Xu, D.G. Eskin, P.D. Lee, and N. Kotsovinos, In situ observation and analysis of ultrasonic capillary effect in molten aluminium, Ultrason. Sonochem., 27(2015), p. 72.
      [12]
      T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Infiltration mechanism of molten aluminum alloys into bundle of carbon fibers using ultrasonic infiltration method, J. Jpn. Inst. Light Met., 56(2006), No. 4, p. 226.
      [13]
      O.B. Kudryashovaa, D.G. Eskinb, A.P. Khrustalyov, and S.A. Vorozhtsov, Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates, Russ. J. Non-Ferrous Met., 58(2017), No. 4, p. 427.
      [14]
      T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method, Composites Part A, 38(2007), No. 3, p. 771.
      [15]
      T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Fabrication of continuous carbon fiber-reinforced aluminum-magnesium alloy composite wires using ultrasonic infiltration method, Composites Part A, 38(2007), No. 8, p. 1902.
      [16]
      T. Matsunaga, K. Matsuda, T. Hatayama, K. Shinozaki, S. Amanuma, P. Jin, and M. Yoshida, Development in manufacturing of carbon fiber reinforced aluminum preform wires using ultrasonic infiltration method, J. Jpn. Inst. Light Met., 56(2006), No. 1, p. 28.
      [17]
      S.T. Mileiko, Metal and Ceramic Based Composite, Elsevier, Amsterdam, 1997, p. 690.
      [18]
      S.L. Li, L.H. Qi, T. Zhang, J.M. Zhou, and H.J. Li, Microstructure and tensile behavior of 2D-Cf/AZ91D composites fabricated by liquid-solid extrusion and vacuum pressure infiltration, J. Mater. Sci. Technol., 33(2017), No. 6, p. 541.
      [19]
      S.L. Li, L.H Qi, T. Zhang, L.Y. Ju, and H.J. Li, Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings, Micron, 101(2017), p. 170.
      [20]
      X. Wang, D.M. Jiang, G.H. Wu, B. Li, and P.Z. Li, Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 31.
      [21]
      Y.H. Zhang and G.H. Wu, Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites, Rare Met., 29(2010), No. 1, p. 102.

    Catalog


    • /

      返回文章
      返回