Cite this article as: |
Xiang-hui Tian, Da-zhao Song, Xue-qiu He, Hui-fang Liu, Wei-xiang Wang, and Zhen-lei Li, Surface microtopography and micromechanics of various rank coals, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp. 1351-1363. https://doi.org/10.1007/s12613-019-1879-5 |
Da-zhao Song E-mail: songdz@ustb.edu.cn
[1] |
C. Wang, B.B. Li, Q.M. Liang, and J.C. Wang, Has China's coal consumption already peaked? A demand-side analysis based on hybrid prediction models, Energy, 162(2018), p. 272.
|
[2] |
J. Xu, H. Tang, S. Su, J.W. Liu, K. Xu, K. Qian, Y. Wang, Y.B. Zhou, S. Hu, A.C. Zhang, and J. Xiang, A study of the relationships between coal structures and combustion charac-teristics:The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals, Appl. Energy, 212(2018), p. 46.
|
[3] |
Y. Hao, Z.Y. Zhang, H. Liao, and Y.M. Wei, China's fare-well to coal:A forecast of coal consumption through 2020, Energy Policy, 86(2015), p. 444.
|
[4] |
P. Cienfuegos and J. Loredo, Coalbed methane resources as-sessment in Asturias (Spain), Int. J. Coal Geol., 83(2010), No. 4, p. 366.
|
[5] |
C.O. Karacan and E. Okandan, Adsorption and gas transport in coal microstructure:investigation and evaluation by quan-titative X-ray CT imaging, Fuel, 80(2001), No. 4, p. 509.
|
[6] |
B.S. Nie, P.H. Fan, and X.C. Li, Quantitative investigation of anisotropic characteristics of methane-induced strain in coal based on coal particle tracking method with X-ray computer tomography, Fuel, 214(2018), p. 272.
|
[7] |
W.T. Yin, G. Fu, C. Yang, Z.A. Jiang, K. Zhu, and Y. Gao, Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors:2000-2014, Saf. Sci., 92(2017), p. 173.
|
[8] |
J.J. Fernandez-Diaz, C. Gonzalez-Nicieza, M.I. Alva-rez-Fernandez, and F. Lopez-Gayarre, Analysis of gas-dynamic phenomenon in underground coal mines in the central basin of Asturias (Spain), Eng. Fail. Anal., 34(2013), p. 464.
|
[9] |
M.B.D Aguado and C.G. Niciezá, Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain, Int. J. Coal Geol., 69(2007), No. 4, p. 253.
|
[10] |
Y.P. Cheng, H.F. Wang, and L. Wang, Theories and Engi-neering Applications on Coal Mine Gas Control, China Uni-versity of Mining and Technology Press, Xuzhou, 2010, p. 36.
|
[11] |
Y. Qin, Advances in overseas geological research on coalbed gas:Origin and reservoir characteristics of coalbed gas, Earth Sci. Front., 12(2005), No. 3, p. 289.
|
[12] |
B.Y. Wang, Y. Qin, J. Shen, Q.S. Zhang, and G. Wang, Pore structure characteristics of low-and medium-rank coals and their differential adsorption and desorption effects, J. Pet. Sci. Technol., 165(2018), p. 1.
|
[13] |
B.S. Nie, X.F. Liu, L.L. Yang, J.Q. Meng, and X.C. Li, Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy, Fuel, 158(2015), p. 908.
|
[14] |
F. Wang, Y.P. Cheng, S.Q. Lu, K. Jin, and W. Zhao, Influ-ence of coalification on the pore characteristics of mid-dle-high rank coal, Energy Fuels, 28(2014), No. 9, p. 5729.
|
[15] |
X.F. Liu, B.S. Nie, W.X. Wang, Z.P. Wang, and L. Zhang, The use of AFM in quantitative analysis of pore characteris-tics in coal and coal-bearing shale, Mar. Pet. Geol., 105(2019), p. 331.
|
[16] |
X.H. Shi, J.N. Pan, Q.L. Hou, Y. Jin, Z.Z. Wang, Q.H. Niu, and M. Li, Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory, Fuel, 212(2018), p. 162.
|
[17] |
H.G. Hansma, K.J. Kim, D.E. Laney, R.A. Garcia, M. Ar-gaman, M.J. Allen, and S.M. Parsons, Properties of biomolecules measured from atomic force microscope images:a review, J. Struct. Biol., 119(1997), No. 2, p. 99.
|
[18] |
Z.Y. Gao, Y.H. Hu, W. Sun, and J.W. Drelich, Sur-face-charge anisotropy of scheelite crystals, Langmuir, 32(2016), No. 25, p. 6282.
|
[19] |
N. Kumar, C.L. Zhao, A. Klaassen, D. van den Ende, F. Mugele, and I. Siretanu, Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy, Geochim. Cosmochim. Acta, 175(2016), p. 100.
|
[20] |
Y. Tanaka, J.M. Yang, Y.F. Liu, and Y. Kagawa, Characterization of nanoscale deformation in a discontinuously reinforced titanium composite using AFM and nanolithography, Scripta Mater., 56(2007), No. 3, p. 209.
|
[21] |
X.Q. He, X.F. Liu, D.Z. Song, and B.S. Nie, Effect of microstructure on electrical property of coal surface, Appl. Surf. Sci., 483(2019), p. 713.
|
[22] |
L.E. Bertassoni, G.W. Marshall, and M.V. Swain, Mechani-cal heterogeneity of dentin at different length scales as deter-mined by AFM phase contrast, Micron, 43(2012), No. 12, p. 1364.
|
[23] |
A. Bonyár, L.M. Molnár, and G. Harsányi, Localization fac-tor:a new parameter for the quantitative characterization of surface structure with atomic force microscopy (AFM), Mi-cron, 43(2012), No. 2-3, p. 305.
|
[24] |
J.N. Pan, H.T. Zhu, Q.L. Hou, H.C. Wang, and S. Wang, Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy, Fuel, 139(2015), p. 94.
|
[25] |
S.P. Yao, K. Jiao, K. Zhang, W.X. Hu, H. Ding, M.C. Li, and W.M. Pei, An atomic force microscopy study of coal na-nopore structure, Chin. Sci. Bull., 56(2011), No. 25, p. 2706.
|
[26] |
S.Q. Wang, S.M. Liu, Y.B. Sun, D. Jiang, and X.M. Zhang, Investigation of coal components of Late Permian different ranks bark coal using AFM and Micro-FTIR, Fuel, 187(2017), p. 51.
|
[27] |
J.X. Liu, X.M. Jiang, X.Y. Huang, and S.H. Wang, Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle, Fuel, 89(2010), No. 12, p. 3884.
|
[28] |
P. Trtik, J. Kaufmann, and U. Volz, On the use of peak-force tapping atomic force microscopy for quantification of the lo-cal elastic modulus in hardened cement paste, Cem. Concr. Res., 42(2012), No. 1, p. 215.
|
[29] |
T.J. Young, M.A. Monclus, T.L. Burnett, W.R. Broughton, S.L. Ogin, and P.A. Smith, The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of poly-mers, Meas. Sci. Technol., 22(2011), No. 12, art. No. 125703.
|
[30] |
O.D.S. Ferreira, E. Gelinck, D. de Graaf, and H. Fischer, Adhesion experiments using an AFM-Parameters of influ-ence, Appl. Surf. Sci., 257(2010), No. 1, p. 48.
|
[31] |
Y.J. Jiang and K.T. Turner, Measurement of the strength and range of adhesion using atomic force microscopy, Extreme Mech. Lett., 9(2016), p. 119.
|
[32] |
W.B. Ma, C.L. Qi, Q. Liu, Y.H. Ding, and W. Zhu, Adhesion force measurements between deep-sea soil particles and metals by in situ AFM, Appl. Clay Sci, 148(2017), p. 118.
|
[33] |
G. Smolyakov, S. Pruvost, L. Cardoso, B. Alonso, E. Belamie, and J. Duchet-Rumeau, AFM PeakForce QNM mode:Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites, Carbohydr. Polym., 151(2016), p. 373.
|
[34] |
D.Y. Jiang, C.G. Tian, Q.F. Liu, M. Zhao, J.M. Qin, J.H. Hou, S. Gao, Q.C. Liang, and J.X. Zhao, Young's modulus of individual ZnO nanowires, Mater. Sci. Eng. A, 610(2014), p. 1.
|
[35] |
D. Haba, J. Kaufmann, A.J. Brunner, K. Resch, and C. Teichert, Observation of elastic modulus inhomogeneities in thermosetting epoxies using AFM-Discerning facts and arti-facts, Polymer, 55(2014), No. 16, p. 4032.
|
[36] |
L.Y. Lin and D.E. Kim, Measurement of the elastic modulus of polymeric films using an AFM with a steel mi-cro-spherical probe tip, Polym. Test., 31(2012), No. 7, p. 926.
|
[37] |
B. Pittenger, N. Erina, and C.M. Su, Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM, Application Note Veeco Instruments Inc, 2010, p. 1.
|
[38] |
H. Zhang, J.X. Huang, Y.W. Wang, R. Liu, X.L. Huai, J.J. Jiang, and C. Anfuso, Atomic force microscopy for two-dimensional materials:A tutorial review, Opt. Commun., 406(2018), p. 3.
|
[39] |
J.H. Hafner, C.L. Cheung, A.T. Woolley, and C.M. Lieber, Structural and functional imaging with carbon nanotube AFM probes, Prog. Biophys. Mol. Biol., 77(2001), No. 1, p. 73.
|
[40] |
E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 123(2002), No. 1, p. 133.
|
[41] |
F.B. Zhou, S.Q. Liu, Y.Q. Pang, J.L. Li, and H.H. Xin, Ef-fects of coal functional groups on adsorption microheat of coal bed methane, Energy Fuels, 29(2015), No. 3, p. 1550.
|
[42] |
X.Q. He, X.F. Liu, B.S. Nie, and D.Z. Song, FTIR and Ra-man spectroscopy characterization of functional groups in various rank coals, Fuel, 206(2017), p. 555.
|
[43] |
X.F. Liu, D.Z. Song, X.Q. He, B.S. Nie, and L.K. Wang, In-sight into the macromolecular structural differences between hard coal and deformed soft coal, Fuel, 245(2019), p. 188.
|
[44] |
L.D. Garner-O'Neale, A.F. Bonamy, T.L. Meek, and B.G. Patrick, Calculating group electronegativities using the re-vised Lewis-Langmuir equation, J. Mol. Struc. THE-OCHEM, 639(2003), No. 1-3, p. 151.
|
[45] |
J.R. Levine, Influences of coal composition on coal seam reservoir quality:a review,[in] Symposium on Coalbed Me-thane Research and Development in Australia, Townsville, 1992, p. 19.
|
[46] |
L. Huang, H.W. Fang, M.H. Chen, and H.M. Zhao, Review of surface charge characteristics of fine sediments, J. Tsing-hua Univ. Sci. Technol., 52(2012), No. 6, p. 747.
|