Richard Espiritu, and Alberto Amorsolo Jr., Fabrication and characterization of Cu-Zn-Sn shape memory alloys via an electrodeposition-annealing route, Int. J. Miner. Metall. Mater., 26(2019), No. 11, pp.1436-1449. https://dx.doi.org/10.1007/s12613-019-1886-6 |
K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, United Kingdom, 1999. |
D.C. Lagoudas, Shape Memory Alloys:Modeling and Engineering Applications, Springer Science & Business Media, New York, 2008, p. 1. |
J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56(2014), p. 1078. |
W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, and H. Purnawali, Shape memory materials, Mater. Today, 13(2010), No. 7-8, p. 54. |
R.A. Ahmed, A comparative study on the corrosion performance of Ni47Ti49Co4 and Ni51Ti49 shape memory alloys in simulated saliva solution for dental applications, Acta Metall. Sin. (Engl. Lett.), 29(2016), No. 11, p. 1001. |
L. Petrini and F. Migliavacca, Biomedical applications of shape memory alloys, J. Metall., 2011(2011), art No. 501483 |
D. Quan and X. Hai, Shape memory alloy in various aviation field, Procedia Eng., 99(2015), p. 1241. |
S. Wang, K. Tsuchiya, L. Wang, and M. Umemoto, Deformation mechanism and stabilization of martensite in TiNi shape memory alloy, J. Mater. Sci. Technol., 26(2010), No. 10, p. 936. |
B.C. Zhang, J. Chen, and C. Coddet, Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder, J. Mater. Sci. Technol., 29(2013), No. 9, p. 863. |
H.J. Jiang, S.S. Cao, C.B. Ke, X.P. Ma, and X.P. Zhang, Fine-grained bulk NiTi shape memory alloy fabricated by rapid solidification process and its mechanical properties and damping performance, J. Mater. Sci. Technol., 29(2013), No. 9, p. 855. |
C.Y. Chung and C.W.H. Lam, Cu-based shape memory alloys with enhanced thermal stability and mechanical properties, Mater. Sci. Eng. A, 273-275(1999), p. 622. |
R. Dasgupta, A look into Cu-based shape memory alloys:Present scenario and future prospects, J. Mater. Res., 29(2014), No. 16, p. 1681. |
E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, and X.J. Gao, Shape memory alloys, Part I:General properties and modeling of single crystals, Mech. Mater., 38(2006), No. 5-6, p. 391. |
S. Ozgen and C. Tatar, Thermoelastic transition kinetics of a gamma irradiated CuZnAl shape memory alloy, Met. Mater. Int., 18(2012), No. 6, p. 909. |
H. Funakubo and J.B. Kennedy, Shape Memory Alloys, Gordon and Breach Science Publishers, New York, 1987. |
M. Ahlers, Martensite and equilibrium phases in CuZn and CuZnAl alloys, Prog. Mater. Sci., 30(1986), No. 3, p. 135. |
D.Y. Li, S.L. Zhang, W.B. Liao, G.H. Geng, and Y. Zhang, Superelasticity of Cu-Ni-Al shape memory fibers prepared by melt extraction technique, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 928. |
Z.G. Wang, X.T. Zu, and Y.Q. Fu, Review on the temperature memory effect in shape memory alloys, Int. J. Smart Nano Mater., 2(2011), No. 3, p. 101. |
S. Miyazaki and K. Otsuka, Development of shape memory alloys, ISIJ Int., 29(1989), No. 5, p. 353. |
U. Sari, Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 192. |
G.B. Narasimha and S.M. Murigendrappa, Effect of zirconium on the properties of polycrystalline Cu-Al-Be shape memory alloy, Mater. Sci. Eng. A, 755(2019), p. 211. |
X. Hu, Y.F. Zheng, Y.X. Tong, F. Chen, B. Tian, H.M. Zhou, and L. Li, High damping capacity in a wide temperature range of a compositionally graded TiNi alloy prepared by electroplating and diffusion annealing, Mater. Sci. Eng. A, 623(2015), p. 1. |
P. Fricoteaux and C. Rousse, Nanowires of Cu-Zn and Cu-Zn-Al shape memory alloys elaborated via electrodeposition in ionic liquid, J. Electroanal. Chem., 733(2014), p. 53. |
İ.H. Karahan and R. Özdemir, Effect of Cu concentration on the formation of Cu1-xZnx shape memory alloy thin films, Appl. Surf. Sci., 318(2014), p. 100. |
S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, and H.E. Khaniki, A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders, Mater. Sci. Eng. A, 556(2012), p. 658. |
S.H. Kang, S.G. Hur, H.W. Lee, and T.H. Nam, Microstructures and transformation behavior of Ti-Ni-Cu shape memory alloy powders fabricated by ball milling method, Met. Mater., 6(2000), No. 4, p. 381. |
T.H. Nam and S.H. Kang, Effect of ball milling conditions on the microstructure and the transformation behavior of Ti-Ni and Ti-Ni-Cu shape memory alloy powders, Met. Mater. Int., 8(2002), No. 2, p. 145. |
K. Mehrabi, M. Brunčko, A.C. Kneissl, M. Čolič, D. Stamenković, J. Ferčec, I. Anžel, and R. Rudolf, Characterisation of melt spun Ni-Ti shape memory Ribbons' microstructure, Met. Mater. Int., 18(2012), No. 3, p. 413. |
M. Izadinia and K. Dehghani, Microstructural evolution and mechanical properties of nanostructured Cu-Al-Ni shape memory alloys, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 333. |
A. Agrawal and R.K. Dube, Methods of fabricating Cu-Al-Ni shape memory alloys, J. Alloys Compd., 750(2018), p. 235. |
M. Schetky, Intermetallic Compounds, John Wiley and Sons, New York, 1994, p. 529. |
M. Schlesinger and M. Paunovic, Fundamentals of Electrochemical Deposition, 2nd Ed., Wiley Interscience, New Jersey, 2006. |
E.A. Brandes and G. Brook, Smithells Metals Reference Book, 7th Ed., Butterworth-Heinemann, Oxford, 1992. |
R.D.V. Espiritu and A.V. Amorsolo Jr., SEM-EDX analysis of intermetallic phases in a Cu-Zn-Sn shape memory alloy, Microsc. Anal., 24(2010), No. 6, p. 15. |
M.S. Suh, C.J. Park, and H.S. Kwon, Growth kinetics of Cu-Sn intermetallic compounds at the interface of a Cu substrate and 42Sn-58Bi electrodeposits, and the influence of the intermetallic compounds on the shear resistance of solder joints, Mater. Chem. Phys., 110(2008), No. 1, p. 95. |
B.F. Dyson, T.R. Anthony, and D. Turnbull, Interstitial diffusion of copper in tin, J. Appl. Phys., 38(1967), No. 8, p. 3408. |
A. Churakova, D. Gunderov, A. Lukyanov, and N. Nollmann, Transformation of the TiNi alloy microstructure and the mechanical properties caused by repeated B2-B19' martensitic transformations, Acta Metall. Sin. (Engl. Lett.), 28(2015), No. 10, p. 1230. |
H.Y. Kim and S. Miyazaki, Ni-Free Ti-Based Shape Memory Alloys, Butterworth-Heinemann, Oxford, 2018, p. 193. |
R.D.V. Espiritu and A.V. Amorsolo Jr., DSC analysis of Cu-Zn-Sn shape memory alloy fabricated via electrodeposition route, J. Therm. Anal. Calorim., 107(2012), No. 2, p. 483. |
T.W. Liu, Y.J. Zheng, and L.S. Cui, Transformation sequence rule of martensite plates and temperature memory effect in shape memory alloys, Acta Metall. Sin. (Engl. Lett.), 28(2015), No. 10, p. 1286. |
Constantin Plăcintă, Sergiu Stanciu, Mirela Panainte-Lehadus, et al. Theoretical and Experimental Designs on Several Mechanical Properties of Cu–Al–Zn Shape Memory Alloys Used in the Processing Industry. Materials, 2023, 16(4): 1441.
![]() | |
Isabel Diañez Amores, Joamin González-Gutiérrez, I. Martínez García, et al. 3D printing – Present and future – A Chemical Engineering perspective. Chemical Engineering Research and Design, 2022, 187: 598.
![]() | |
Kenneth Kanayo Alaneme, Tochukwu JohnPaul Ubah, Emmanuel O. Aikulola. On the material characteristics of Ni modified Cu32Zn10Sn shape memory alloys: Mechanical and damping behaviour in consideration. Materials Today: Proceedings, 2022, 62: S73.
![]() |