Abstract:
Magnesium has wide application in industry. The main purpose of this investigation was to improve the properties of magnesium by reinforcing it using B
4C nanoparticles. The reinforced nanocomposites were fabricated using a powder compaction technique for 0, 1.5vol%, 3vol%, 5vol%, and 10vol% of B
4C. Powder compaction was conducted using a split Hopkinson bar (SHB), drop hammer (DH), and Instron to reach different compaction loading rates. The compressive stress–strain curves of the samples were captured from quasi-static and dynamic tests carried out using an Instron and split Hopkinson pressure bar, respectively. Results revealed that, to achieve the highest improvement in ultimate strength, the contents of B
4C were 1.5vol%, 3vol%, and 3vol% for Instron, DH, and SHB, respectively. These results also indicated that the effect of compaction type on the quasi-static strength of the samples was not as significant, although its effect on the dynamic strength of the samples was remarkable. The improvement in ultimate strength obtained from the quasi-static stress–strain curves of the samples (compared to pure Mg) varied from 9.9% for DH to 24% for SHB. The dynamic strength of the samples was improved (with respect to pure Mg) by 73%, 116%, and 141% for the specimens compacted by Instron, DH, and SHB, respectively. The improvement in strength was believed to be due to strengthening mechanisms, friction, adiabatic heating, and shock waves.