留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 1
Jan.  2020

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1763
  • HTML全文浏览量:  227
  • PDF下载量:  25
  • 被引次数: 0
Qiang Ge, Wen-hui Kong, Xin-qian Liu, Ying-min Wang, Li-feng Wang, Ning Ma,  and Yan Li, Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 91-99. https://doi.org/10.1007/s12613-019-1908-4
Cite this article as:
Qiang Ge, Wen-hui Kong, Xin-qian Liu, Ying-min Wang, Li-feng Wang, Ning Ma,  and Yan Li, Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions, Int. J. Miner. Metall. Mater., 27(2020), No. 1, pp. 91-99. https://doi.org/10.1007/s12613-019-1908-4
引用本文 PDF XML SpringerLink
研究论文

羟基化石墨烯量子点作为灵敏检测金属离子的荧光探针

  • Research Article

    Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions

    + Author Affiliations
    • Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater. Here, we developed a new probe for the determination of metal ions by fluorescence quenching. The probe consists of hydroxylated graphene quantum dots (H-GQDs), prepared from GQDs by electrochemical method followed by surface hydroxylation. It is a non-reactive indicator with high sensitivity and detection limits of 0.01 μM for Cu2+, 0.005 μM for Al3+, 0.04 μM for Fe3+, and 0.02 μM for Cr3+. In addition, the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.

    • loading
    • [1]
      B. Li, Z.S. He, H.X. Zhou, H. Zhang, W. Li, T.Y. Cheng, and G.H. Liu, Reaction based colorimetric and fluorescence probes for selective detection of hydrazine, Dyes Pigm., 146(2017), p. 300. doi: 10.1016/j.dyepig.2017.07.023
      [2]
      J. Yao, M. Yang, and Y.X. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: newinsights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev., 114(2014), No. 12, p. 6130. doi: 10.1021/cr200359p
      [3]
      A.T. Aron, A.G. Reeves, and C.J. Chang, Activity-based sensing fluorescent probes for iron in biological systems, Curr. Opin. Chem. Biol., 43(2018), p. 113.
      [4]
      D.J. Cho and J.L. Sessler, Modern reaction-based indicator systems, Chem. Soc. Rev., 38(2009), No. 6, p. 1647. doi: 10.1039/b804436h
      [5]
      P. Roy, P.C. Chen, A.P. Periasamy, Y.N. Chen, and H.T. Chang, Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications, Mater. Today, 18(2014), No. 8, p. 447.
      [6]
      J. Wen, Y.Q. Xu, H.J. Li, A.P. Lu, and S.G. Sun, Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging, Chem. Commun., 51(2015), No. 57, p. 11346. doi: 10.1039/C5CC02887F
      [7]
      Y.B. Song, S.J. Zhu, and B. Yang, Bioimaging based on fluorescent carbon dots, RSC Adv., 4(2014), No. 52, p. 27184. doi: 10.1039/c3ra47994c
      [8]
      L.P. Lin, X.H. Song, Y.Y. Chen, M.C. Rong, Y.R. Wang, L. Zhao, T.T. Zhao, and X. Chen, Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu2+ and l-cysteine, Anal. Chim. Acta, 891(2015), p. 261. doi: 10.1016/j.aca.2015.08.011
      [9]
      Y. Li, X.Q. Liu, Q.Y. Li, J. Ge, H. Liu, S. Li, L.F. Wang, J. Wang, and N. Ma, Post-oxidation treated graphene quantum dots as a fluorescent probe for sensitive detection of copper ions, Chem. Phys. Lett., 664(2016), p. 127. doi: 10.1016/j.cplett.2016.10.030
      [10]
      X.C. Fu, J.Z. Jin, J. Wu, J.C. Jin, and C.G. Xie, A novel “turn-on” fluorescence sensor for high selectively detecting Al (III) in aqueous solution based on simple electrochemical synthesized carbon dots, Anal. Methods, 9(2017), No. 26, p. 3941. doi: 10.1039/C7AY01137G
      [11]
      K.G. Qu, J.S. Wang, J.S. Ren, and X.G. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine, Chem. Eur. J., 19(2013), No. 22, p. 7243. doi: 10.1002/chem.201300042
      [12]
      B.J. Wang, S.J. Zhuo, L.Y. Chen, and Y.J. Zhang, Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions, Spectrochim. Acta Part A, 131(2014), p. 384. doi: 10.1016/j.saa.2014.04.129
      [13]
      S. Sharma, A. Umar, S.K. Mehta, and S.K. Kansal, Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions, Ceram. Int., 43(2017), No. 9, p. 7011. doi: 10.1016/j.ceramint.2017.02.127
      [14]
      F.X. Wang, Z.Y. Gu, W. Lei, W.J. Wang, X.F. Xia, and Q.L. Hao, Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions, Sens. Actuators B, 190(2014), p. 516. doi: 10.1016/j.snb.2013.09.009
      [15]
      X.F. Niu, Y.B. Zhong, R. Chen, F. Wang, Y.J. Liu, and D. Luo, A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles, Sens. Actuators B, 255(2018), p. 1577. doi: 10.1016/j.snb.2017.08.167
      [16]
      S.H. Zhou, H.B. Xu, W. Gan, and Q.H. Yuan, Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications, RSC Adv., 6(2016), No. 112, p. 110775. doi: 10.1039/C6RA24349E
      [17]
      S.J. Zhu, J.H. Zhang, C.Y. Qiao, S.J. Tang, Y.F. Li, W.J. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H.N. Gao, H.T. Wei, H. Zhang, H.C. Sun, and B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun., 47(2011), No. 24, p. 6858. doi: 10.1039/c1cc11122a
      [18]
      Y.Q. Feng, J.P. Zhao, X.B. Yan, F.L. Tang, and Q.J. Xue, Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction, Carbon, 66(2014), No. 1, p. 334.
      [19]
      Z.S. Qian, X.Y. Shan, L.J. Chai, J.R. Chen, and H. Feng, A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion, Biosens. Bioelectron., 68(2015), p. 225. doi: 10.1016/j.bios.2014.12.057
      [20]
      Y. Li, X.Q. Liu, J. Wang, H. Liu, S. Li, Y.B. Hou, W. Wan, W.D. Xue, N. Ma, and J.Z. Zhang, Chemical nature of redox-controlled photoluminescence of graphene quantum dots by post-synthesis treatment, J. Phys. Chem. C, 120(2016), No. 45, p. 26004. doi: 10.1021/acs.jpcc.6b07935
      [21]
      Y. Li, H. Liu, X.Q. Liu, S. Li, L.F. Wang, N. Ma, and D.L. Qiu, Free-radical-assisted rapid synthesis of graphene quantum dots and their oxidizability studies, Langmuir, 32(2016), No. 34, p. 8641. doi: 10.1021/acs.langmuir.6b02422
      [22]
      P.H. Luo, Y. Qiu, X.F. Guan, and L.Q. Jiang, Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment, Phys. Chem. Chem. Phys., 16(2014), No. 35, p. 19011. doi: 10.1039/C4CP02652G
      [23]
      S.J. Zhu, J.H. Zhang, S.J. Tang, C.Y. Qiao, L. Wang, H.Y. Wang, X. Liu, B. Li, Y.F. Li, W.L. Yu, X.F. Wang, H.C. Sun, and B. Yang, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater., 22(2012), No. 22, p. 4732. doi: 10.1002/adfm.201201499
      [24]
      L.L. Li, G.H. Wu, G.H. Yang, J. Peng, J.W. Zhao, and J.J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future perspectives, Nanoscale, 10(2013), No. 5, p. 4015.
      [25]
      S.L. Hu, A. Trinchi, P. Atkin, and I. Cole, Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light, Angew. Chem. Int. Ed., 54(2015), No. 10, p. 2970. doi: 10.1002/anie.201411004
      [26]
      T.J. Fan, W.J. Zeng, W. Tang, C.Q. Yuan, S.Z. Tong, K.Y. Cai, Y.D. Liu, W. Huang, Y. Min, and A.J. Epstein, Controllable size-selective method to prepare graphene quantum dots from graphene oxide, Nanoscale Res. Lett., 10(2015), No. 19, p. 55.
      [27]
      J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., Springer Science+Business Media, LLC, New York, 2006.
      [28]
      C.Q. Zhang, Y. Yan, Q.H. Pan, L.B. Sun, H.M. He, Y.L. Liu, Z.Q. Liang, and J.Y. Li, A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions, Dalton Trans., 44(2015), No. 29, p. 13340. doi: 10.1039/C5DT01065A
      [29]
      X.H. Zhou, L. Li, H.H. Li, A. Li, T. Yang, and W. Huang, A flexible Eu(III)-based metal-organic framework: Turn-off luminescent sensor for the detection of Fe(III) and picric acid, Dalton Trans., 42(2013), No. 34, p. 12403. doi: 10.1039/c3dt51081f
      [30]
      X.Q. Dong, C.L. Li, J. Li, W.T. Huang, J. Wang, and R.B. Liao, Application of a system dynamics approach for assessment of the impact of regulations on cleaner production in the electroplating industry in China, J. Cleaner Prod., 20(2012), No. 1, p. 72. doi: 10.1016/j.jclepro.2011.08.014
      [31]
      L. Shi, J.S. Shi, and Y. Shi, Discussion on the emission standard of pollutants for electroplating, Electroplat. Finish., 28(2009), No. 5, p. 44.
      [32]
      C. Shen, S.Y. Ge, Y.Y. Pang, F.N. Xi, J.Y. Liu, X.P. Dong, and P. Chen, Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions, J. Mater. Chem. B, 5(2017), No. 32, p. 6593. doi: 10.1039/C7TB00506G
      [33]
      X.F. Liu, W. Gao, X.M. Zhou, and Y.Y. Ma, Pristine graphene quantum dots for detection of copper ions, J. Mater. Res., 29(2014), No. 13, p. 1401. doi: 10.1557/jmr.2014.145
      [34]
      V. Dujols, F. Ford, and A.W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc., 119(1997), No. 31, p. 7386. doi: 10.1021/ja971221g
      [35]
      L. Fan, J.C. Qin, T.R. Li, B.D. Wang, and Z.Y. Yang, A novel rhodamine chromone-based "Off-On" chemo sensor for the differential detection of Al(III) and Zn(II) in aqueous solutions, Sens. Actuators B, 203(2014), No. 14, p. 550.
      [36]
      D. Wang, L. Wang, X.Y. Dong, Z. Shi, and J. Jin, Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection, Carbon, 50(2012), No. 6, p. 2147. doi: 10.1016/j.carbon.2012.01.021
      [37]
      J. Ju and W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media, Biosens. Bioelectron., 58(2014), p. 219. doi: 10.1016/j.bios.2014.02.061
      [38]
      C. Yi, W.W. Tian, B. Song, Y.P. Zheng, Z.J. Qi, Q. Qi, and Y.M. Sun, A new turn-off fluorescent chemosensor for iron (III) based on new diphenylfluorenes with phosphonic acid, J. Lumin., 141(2013), p. 15. doi: 10.1016/j.jlumin.2013.03.017
      [39]
      L.Q Liu, Y.F Li, L. Zhan, Y. Liu, and C.Z. Huang, One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions, Sci. China Chem., 54(2011), No. 8, p. 1342. doi: 10.1007/s11426-011-4351-6
      [40]
      Y.F. Chen, C.L. Kao, P.C. Huang, C.Y. Hsu, and C.H. Kuei, Facile synthesis of multi-responsive functional graphene quantum dots for sensing metal cations, RSC Adv., 6(2016), No. 105, p. 103006. doi: 10.1039/C6RA22586A
      [41]
      J.W. Xin, L.J. Miao, S.G. Chen, and A.G. Wu, Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions, Anal. Methods, 4(2012), No. 5, p. 1259. doi: 10.1039/c2ay25061f
      [42]
      H. Huang, Y.H. Weng, L.H. Zheng, B.X. Yao, W. Weng, and X.C. Lin, Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, L-cysteine and iodide ions, J. Colloid Interface Sci., 506(2017), p. 373. doi: 10.1016/j.jcis.2017.07.076

    Catalog


    • /

      返回文章
      返回