留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 2
Feb.  2020

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1378
  • HTML全文浏览量:  497
  • PDF下载量:  25
  • 被引次数: 0
Tao Yang, Hui-juan Liu, Fan Bai, En-hui Wang, Jun-hong Chen, Kuo-Chih Chou,  and Xin-mei Hou, Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 220-231. https://doi.org/10.1007/s12613-019-1910-x
Cite this article as:
Tao Yang, Hui-juan Liu, Fan Bai, En-hui Wang, Jun-hong Chen, Kuo-Chih Chou,  and Xin-mei Hou, Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance, Int. J. Miner. Metall. Mater., 27(2020), No. 2, pp. 220-231. https://doi.org/10.1007/s12613-019-1910-x
引用本文 PDF XML SpringerLink
研究论文

可在宽温度范围内工作且具有稳定的循环性能的基于h-BNNSs/rGO复合材料的超级电容器电极

  • Research Article

    Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance

    + Author Affiliations
    • Currently, developing supercapacitors with robust cycle stability and suitability for wide-temperature-range operations is still a huge challenge. In the present work, few-layer hexagonal boron nitride nanosheets (h-BNNSs) with a thickness of 2−4 atomic layers were fabricated via vacuum freeze-drying and nitridation. Then, the h-BNNSs/reduced graphene oxide (rGO) composite were further prepared using a hydrothermal method. Due to the combination of two two-dimensional (2D) van der Waals-bonded materials, the as-prepared h-BNNSs/rGO electrode exhibited robustness to wide-temperature-range operations from −10 to 50°C. When the electrodes worked in a neutral aqueous electrolyte (1 M Na2SO4), they showed a great stable cycling performance with almost 107% reservation of the initial capacitance at 0°C and 111% at 50°C for 5000 charge−discharge cycles.

    • loading
    • [1]
      L. Zhang, X.S. Hu, Z.P. Wang, F.C. Sun, and D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable Sustainable Energy Rev., 81(2018), p. 1868. doi: 10.1016/j.rser.2017.05.283
      [2]
      W.J. Li, Q. Liu, S.L. Chen, Z. Fang, X. Liang, G.D. Wei, L. Wang, W.Y. Yang, Y. Ji, and L.Q Mai, Single-crystalline integrated 4H-SiC nanochannel array electrode: Toward high-performance capacitive energy storage for robust wide-temperature operation, Mater. Horiz., 5(2018), No. 5, p. 883. doi: 10.1039/C8MH00474A
      [3]
      M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 12(2018), No. 25, p. 1482.
      [4]
      Z. Ghasemi majd, P. Amiri, and S.F. Taghizadeh, Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure, Surf. Sci., 672-673(2018), p. 13. doi: 10.1016/j.susc.2018.03.001
      [5]
      Z. Cao, J.H. Bu, Z.Q. Zhong, C.Y. Sun, Q.S. Zhang, J.D. Wang, S.H. Chen, and X.W. Xie, Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature, Appl. Catal. A, 578(2019), p. 105. doi: 10.1016/j.apcata.2019.04.006
      [6]
      J. Zhang, H.L. Zhang, P. Zhou, P.H. Qing, H.B. Xu, and Y. Zhang, Porous hexagonal boron nitride nanosheets with large adsorption capacity for Cu2+ synthesized through a two-step roasting process, Mater. Lett., 213(2018), p. 211. doi: 10.1016/j.matlet.2017.11.075
      [7]
      A. Lale, S. Bernard, and U.B. Demirci, Boron nitride for hydrogen storage, ChemPlusChem, 83(2018), No. 10, p. 893. doi: 10.1002/cplu.201800168
      [8]
      Z.Y. Liu, Y. Fang, H.C. Jia, C. Wang, Q.Q. Song, L.L. Li, J. Lin, Y. Huang, C. Yu, and C.C. Tang, Novel multifunctional cheese-like 3D carbon-BN as a highly efficient adsorbent for water purification, Sci. Rep., 8(2018), art. No. 1104.
      [9]
      P.W. Wu, W.S. Zhu, B.L. Dai, Y.H. Chao, C.F. Li, H.P. Li, M. Zhang, W. Jiang, and H.M. Li, Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization, Chem. Eng. J., 301(2016), p. 123. doi: 10.1016/j.cej.2016.04.103
      [10]
      Y.X. Ji, B. Calderon, Y.M. Han, P. Cueva, N.R. Jungwirth, H.A. Alsalman, J. Hwang, G.D. Fuchs, D.A. Muller, and M.G. Spencer, Chemical vapor deposition growth of large single-crystal mono-, bi-, tri-layer hexagonal boron nitride and their interlayer stacking, ACS Nano, 11(2017), No. 12, p. 12057. doi: 10.1021/acsnano.7b04841
      [11]
      Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
      [12]
      R. Vellacheri, A. Al-Haddad, H.P. Zhao, W.X. Wang, C.L. Wang, and Y. Lei, High performance supercapacitor for efficient energy storage under extreme environmental temperatures, Nano Energy, 8(2014), p. 231. doi: 10.1016/j.nanoen.2014.06.015
      [13]
      W.Q. Han, L.J. Wu, Y.M. Zhu, K.J. Watanabe, and T. Taniguchi, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl. Phys. Lett., 93(2008), No. 22, art. No. 223103.
      [14]
      M. Yankowitz, Q. Ma, P. Jarillo-Herrero, and B.J. LeRoy, Van der Waals heterostructures combining graphene and hexagonal boron nitride, Nat. Rev. Phys., 1(2019), No. 2, p. 112. doi: 10.1038/s42254-018-0016-0
      [15]
      C.K. Chang, S. Kataria, C.C. Kuo, et al., Band gap engineering of chemical vapor deposited graphene by in situ BN doping, ACS Nano, 7(2013), No. 2, p. 1333.
      [16]
      X.L. Li, J. Liu, K. Ding, X.H. Zhao, S. Li, W.G. Zhou, and B.L. Liang, Temperature dependence of raman-active in-plane E2g phonons in layered graphene and h-BN flakes, Nanoscale Res. Lett., 13(2018), No. 1, p. 25. doi: 10.1186/s11671-018-2444-2
      [17]
      M.J. Wang, Z.Y. Jiao, Y.P. Chen, X. Hou, L. Fu, Y.M. Wu, S.Y. Li, N. Jiang, and J.H. Yu, Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content, Composites Part A, 109(2018), p. 321. doi: 10.1016/j.compositesa.2018.03.023
      [18]
      Q. Li, T. Yang, Q.F. Yang, F. Wang, K.C. Chou, and X.M. Hou, Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water, Ceram. Int., 42(2016), No. 7, p. 8754. doi: 10.1016/j.ceramint.2016.02.114
      [19]
      J.Y. Sun, C. Lu, Y.Z. Song, Q.Q. Ji, X.J. Song, Q.C. Li, Y.F. Zhang, L. Zhang, J. Kong, and Z.F. Liu, Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition, Chem. Soc. Rev., 47(2018), No. 12, p. 4242. doi: 10.1039/C8CS00167G
      [20]
      Z.H. Du, X.M. Zeng, M.M. Zhu, A. Kanta, Q. Liu, J.Z. Li, and L.B. Kong, Alkyl ethoxylate assisted liquid phase exfoliation of BN nanosheet and its application as interphase for oxide/oxide composites, Ceram. Int., 44(2018), No. 17, p. 21461. doi: 10.1016/j.ceramint.2018.08.207
      [21]
      P.W. Wu, W.S. Zhu, Y.H. Chao, J.S. Zhang, P.F. Zhang, H.Y. Zhu, C.F. Li, Z.G. Chen, H.M. Li, and S. Dai, A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization., Chem. Commun., 52(2016), No. 1, p. 144. doi: 10.1039/C5CC07830J
      [22]
      X.F. Tu, Y.K. Zhou, and Y.J. Song, Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries, Appl. Surf. Sci., 400(2017), p. 329. doi: 10.1016/j.apsusc.2016.12.220
      [23]
      D.Y. Guo, Y.J. Zhao, C. Ling, J.B. Li, and H.B. Jin, Vacuum freeze-drying assisted preparation of spherical AlB2 powders with ultrafine microstructure, Ceram. Int., 44(2018), No. 6, p. 6451. doi: 10.1016/j.ceramint.2018.01.040
      [24]
      D. Annie, V. Chandramouli, S. Anthonysamy, C. Ghosh, and R. Divakar, Freeze drying vs microwave drying–methods for synthesis of sinteractive thoria powders, J. Nucl. Mater., 484(2017), p. 51. doi: 10.1016/j.jnucmat.2016.11.019
      [25]
      R.P. Liu, T.T. Xu, and C.A. Wang, A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method, Ceram. Int., 42(2016), No. 2, p. 2907. doi: 10.1016/j.ceramint.2015.10.148
      [26]
      W. Luo, Y.B. Wang, E. Hitz, Y. Lin, B. Yang, and L.B. Hu, Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications, Adv. Funct. Mater., 27(2017), No. 31, art. No. 1701450.
      [27]
      X.L. Xi, Z.R. Nie, J.C. Yang, X.T. Fu, W. Wang, and T.Y. Zuo, Preparation and characterization of Ce–W composite nanopowder, Mater. Sci. Eng. A, 394(2005), No. 1-2, p. 360. doi: 10.1016/j.msea.2004.11.052
      [28]
      W.L. Luan, L. Gao, and J.K. Guo, Study on drying stage of nanscale powder preparation, Nanostruct. Mater., 10(1998), No. 7, p. 1119. doi: 10.1016/S0965-9773(98)00142-1
      [29]
      R.Y. Tay, M.H. Griep, G. Mallick, S.H. Tsang, R.S. Singh, T. Tumlin, E.H.T. Teo, and S.P. Karna, Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper, Nano Lett., 14(2014), No. 2, p. 839. doi: 10.1021/nl404207f
      [30]
      Y. Wen, X. Shang, J. Dong, K. Xu, J. He, and C. Jiang, Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nanotechnology, 26(2015), No. 27, art. No. 275601.
      [31]
      D. Watanabe, H. Aoki, R. Moriyama, M.K. Mazumder, C. Kimura, and T. Sugino, Characterization of BCN film after wet process for interconnection integration, Diamond Relat. Mater., 17(2008), No. 4-5, p. 669. doi: 10.1016/j.diamond.2007.10.029
      [32]
      Y. Wada, Y.K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, The control of BN and BC bonds in BCN films synthesized using pulsed laser deposition, Diamond Relat. Mater., 9(2000), No. 3-6, p. 620. doi: 10.1016/S0925-9635(00)00204-1
      [33]
      P.C. Tsai, The deposition and characterization of BCN films by cathodic arc plasma evaporation, Surf. Coat. Technol., 201(2007), No. 9-11, p. 5108. doi: 10.1016/j.surfcoat.2006.07.119
      [34]
      A. Prakash and K.B. Sundaram, Deposition and XPS studies of dual sputtered BCN thin films, Diamond Relat. Mater., 64(2016), p. 80. doi: 10.1016/j.diamond.2016.01.014
      [35]
      C.J. Huang, C. Chen, M.W. Zhang, L.H. Lin, X.X. Ye, S. Lin, M. Antonietti, and X.C. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun., 6(2015), art. No. 7698.
      [36]
      M.A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, and Y. Baba, Chemical bonding states and local structures of the oriented hexagonal BCN films synthesized by microwave plasma CVD, Mater. Sci. Semicond. Process., 11(2008), No. 3, p. 100. doi: 10.1016/j.mssp.2009.04.003
      [37]
      L.C. Wang, S.Q. Ni, C.L. Guo, and Y.T. Qian, One pot synthesis of ultrathin boron nitride nanosheet-supported nanoscale zerovalent iron for rapid debromination of polybrominated diphenyl ethers, J. Mater. Chem. A, 1(2013), No. 21, p. 6379. doi: 10.1039/c3ta10282c
      [38]
      X.M. Guo, B.X. Feng, L.G. Gai, and J.H. Zhou, Reduced graphene oxide/polymer dots-based flexible symmetric supercapacitors delivering an output potential of 1.7 V with electrochemical charge injection, Electrochim. Acta, 293(2019), p. 399. doi: 10.1016/j.electacta.2018.10.057
      [39]
      X.M. Hou, Q. Li, L.Q. Zhang, T. Yang, J.H. Chen, and L. Su, Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafast-charging/discharging and excellent stable supercapacitors, J. Power Sources, 396(2018), p. 319. doi: 10.1016/j.jpowsour.2018.06.033
      [40]
      Z.Q. Ye, F.J. Wang, C. Jia, K.G. Mu, M. Yu, Y.Y. Lv, and Z.Q. Shao, Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes, Chem. Eng. J., 330(2017), p. 1166. doi: 10.1016/j.cej.2017.08.070
      [41]
      S.G. Huang, J. Sun, J. Yan, J.Q. Liu, W.J. Wang, Q.Q. Qin, W.P. Mao, W. Xu, Y.C. Wu, and J.F. Wang, Enhanced high-temperature cyclic stability of Al-doped manganese dioxide and morphology evolution study through in situ NMR under high magnetic field, ACS Appl. Mater. Interfaces, 10(2018), No. 11, p. 9398. doi: 10.1021/acsami.7b18762
      [42]
      W.W. Lv, R.P. Xue, S. Chen, and M.J. Jiang, Temperature stability of symmetric activated carbon supercapacitors assembled with in situ electrodeposited poly(vinyl alcohol) potassium borate hydrogel electrolyte, Chin. Chem. Lett., 29(2018), No. 4, p. 637. doi: 10.1016/j.cclet.2017.11.035
      [43]
      Y.T. Weng, H.A. Pan, N.L. Wu, and G.Z. Chen, Titanium carbide nanocube core induced interfacial growth of crystalline polypyrrole/polyvinyl alcohol lamellar shell for wide-temperature range supercapacitors, J. Power Sources, 274(2015), p. 1118. doi: 10.1016/j.jpowsour.2014.10.158
      [44]
      A. Meng, Z. Yang, Z.J. Li, X.C. Yuan, and J. Zhao, Nanochain architectures constructed by hydrangea-like MoS2 nanoflowers and SiC nanowires: Synthesis, mechanism and the enhanced electrochemical and wide-temperature properties as an additive-free negative electrode for supercapacitors, J. Alloys Compd., 746(2018), p. 93. doi: 10.1016/j.jallcom.2018.02.280
      [45]
      C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, and N.M. Huang, Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2146. doi: 10.1021/acs.iecr.7b04980
      [46]
      J.G. Wang, Y. Yang, Z.H. Huang, and F. Kang, Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte, J. Power Sources, 224(2013), p. 86. doi: 10.1016/j.jpowsour.2012.09.075

    Catalog


    • /

      返回文章
      返回