留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 5
May  2020

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1633
  • HTML全文浏览量:  319
  • PDF下载量:  40
  • 被引次数: 0
Xiao-jie Zhao, Zhi-nan Yang, and Fu-cheng Zhang, In situ observation of the effect of AlN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 620-629. https://doi.org/10.1007/s12613-019-1911-9
Cite this article as:
Xiao-jie Zhao, Zhi-nan Yang, and Fu-cheng Zhang, In situ observation of the effect of AlN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, pp. 620-629. https://doi.org/10.1007/s12613-019-1911-9
引用本文 PDF XML SpringerLink
研究论文

原位观察 AlN 颗粒对无碳化物中碳钢中贝氏体转变的影响

  • Research Article

    In situ observation of the effect of AlN particles on bainitic transformation in a carbide-free medium carbon steel

    + Author Affiliations
    • The bainitic transformation of the steels with different mass fractions of N, ~0.002% and 0.021%, was observed in situ by using high-temperature metalloscope. Micrometer- and nanometer-sized aluminum nitride (AlN) particles were found in the steel with 0.021% N. Grain boundaries, the interior of the grains, and AlN particles were used as initial nucleation sites of bainitic ferrite, and bainitic ferrite subunits served as new nucleation sites to induce secondary nucleation. The lengthening rate of bainitic ferrite varied at different nucleation sites, which was controlled by the repeated nucleation and growth of bainitic subunits. The AlN particles not only provided several nucleation sites, but also increased the autocatalytic effect on the transformation, further shortening the incubation period, promoting the bainitic transformation, and refining the bainitic microstructure.

    • loading
    • [1]
      M. Zhang, T.S. Wang, Y.H. Wang, J. Yang, and F.C. Zhang, Preparation of nanostructured bainite in medium-carbon alloy steel, Mater. Sci. Eng. A, 568(2013), p. 123. doi: 10.1016/j.msea.2013.01.046
      [2]
      J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, High-cycle bending fatigue behavior of nanostructured bainitic steel, Scripta Mater., 66(2012), No. 6, p. 363. doi: 10.1016/j.scriptamat.2011.11.033
      [3]
      W. Solano-Alvare, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of nanostructured bainitic steel under rolling contact fatigue, Mater. Sci. Eng. A, 617(2014), p. 156. doi: 10.1016/j.msea.2014.08.071
      [4]
      C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite, ISIJ Int., 43(2003), No. 11, p. 1821. doi: 10.2355/isijinternational.43.1821
      [5]
      M. Soliman and H. Palkowski, Development of the low temperature bainite, Arch. Civ. Mech. Eng., 16(2016), No. 3, p. 403. doi: 10.1016/j.acme.2016.02.007
      [6]
      H. Huang, M.Y. Sherif, and P.E.J. Rivera-Díaz-del-Castillo, Combinatorial optimization of carbide-free bainitic nanostructures, Acta Mater., 61(2013), No. 5, p. 1639. doi: 10.1016/j.actamat.2012.11.040
      [7]
      T. Sourmail and V. Smanio, Low temperature kinetics of bainite formation in high carbon steels, Acta Mater., 61(2013), No. 7, p. 2639. doi: 10.1016/j.actamat.2013.01.044
      [8]
      M. Enomoto, Nucleation of phase transformations at intragranular inclusions in steel, Met. Mater., 4(1998), No. 2, p. 115. doi: 10.1007/BF03026028
      [9]
      S.D. Catteau, H.P. Van Landeghem, J. Teixeira, J. Dulcy, M. Dehmas, S. Denis, A. Redjaïmia, and M. Courteaux, Carbon and nitrogen effects on microstructure and kinetics associated with bainitic transformation in a low-alloyed steel, J. Alloys Compd., 658(2016), p. 832. doi: 10.1016/j.jallcom.2015.11.007
      [10]
      Y. Luo, W. Yang, Q. Ren, Z.Y. Hu, M. Li, and L.F. Zhang, Evolution of non-metallic inclusions and precipitates in oriented silicon steel, Metall. Mater. Trans. B, 49(2018), No. 3, p. 926. doi: 10.1007/s11663-018-1252-5
      [11]
      S.F. Medina, M. Gómez, and L. Rancel, Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel, Scripta Mater., 58(2008), No. 2, p. 1110.
      [12]
      M. Sennour and C. Esnouf, Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel, Acta Mater., 51(2003), No. 4, p. 943. doi: 10.1016/S1359-6454(02)00498-6
      [13]
      N.E.V. Díaz, S.S. Hosmani, R.E. Schacherl, and E.J. Mittemeijer, Nitride precipitation and coarsening in Fe‒2.23 at.% V alloys: XRD and (HR)TEM study of coherent and incoherent diffraction effects caused by misfitting nitride precipitates in a ferrite matrix, Acta Mater., 56(2008), No. 16, p. 4137. doi: 10.1016/j.actamat.2008.04.041
      [14]
      J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, Microstructure and mechanical properties of high-carbon Si‒Al-rich steel by low-temperature austempering, Mater. Des., 35(2012), p. 170. doi: 10.1016/j.matdes.2011.08.041
      [15]
      C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, and Z.S. Yan, Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time, Mater. Des., 36(2012), p. 220. doi: 10.1016/j.matdes.2011.11.026
      [16]
      D. Zhang, H. Terasaki, and Y.I. Komizo, In situ observation of phase transformation in Fe–0.15C binary alloy, J. Alloys Compd., 484(2009), No. 1-2, p. 929. doi: 10.1016/j.jallcom.2009.05.074
      [17]
      J.W. Elmer, J. Wong, and T. Ressler, In-situ observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved X-ray diffraction, Scripta Mater., 43(2000), p. 751. doi: 10.1016/S1359-6462(00)00481-4
      [18]
      M.K. Kang, M.X. Zhang, and M. Zhu, In situ observation of bainite growth during isothermal holding, Acta Mater., 54(2006), No. 8, p. 2121. doi: 10.1016/j.actamat.2005.12.036
      [19]
      J. Pak, D.W. Suh, and H.K.D.H. Bhadeshia, Displacive phase transformation and surface effects associated with confocal laser scanning microscopy, Metall. Mater. Trans. A, 43(2012), No. 12, p. 4520. doi: 10.1007/s11661-012-1264-8
      [20]
      G. Xu, F. Liu, L. Wang, and H.J. Hu, A new approach to quantitative analysis of bainitic transformation in a superbainite steel, Scripta Mater., 68(2013), No. 11, p. 833. doi: 10.1016/j.scriptamat.2013.01.033
      [21]
      J. Tian, G. Xu, L. Wang, M.X. Zhou, and H.J. Hu, In situ observation of the lengthening rate of bainite sheaves during continuous cooling process in a Fe‒C‒Mn‒Si superbainitic steel, Trans. Indian Inst. Met., 71(2018), No. 1, p. 185. doi: 10.1007/s12666-017-1151-5
      [22]
      Y. Wan, W.Q. Chen, and S.J. Wu, Effect of the hot charging temperature of slabs on AlN and MnS precipitation behavior in non-oriented silicon steel, J. Univ. Sci. Technol. Beijing, 35(2014), No. 8, p. 1007.
      [23]
      A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock, Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scripta Mater., 50(2004), No. 12, p. 1445. doi: 10.1016/j.scriptamat.2004.03.011
      [24]
      S.M.C.V. Bohemen and J. Sietsma, The kinetics of bainite and martensite formation in steels during cooling, Mater. Sci. Eng. A, 527(2010), No. 24-25, p. 6672. doi: 10.1016/j.msea.2010.06.091
      [25]
      A.M. Ravi, J. Sietsma, and M.J. Santofimia, Bainite formation kinetics in steels and the dynamic nature of the autocatalytic nucleation process, Scripta Mater., 140(2017), p. 82. doi: 10.1016/j.scriptamat.2017.06.051
      [26]
      J. Kang, F.C. Zhang, X.W. Yang, B. Lv, and K.M. Wu, Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel, Mater. Sci. Eng. A, 686(2017), p. 150. doi: 10.1016/j.msea.2017.01.044
      [27]
      L.C. Chang and H.K.D.H. Bhadeshia, Austenite films in bainitic microstructures, Mater. Sci. Technol., 11(1995), No. 9, p. 874. doi: 10.1179/mst.1995.11.9.874
      [28]
      S. Zajac, V. Schwinn, and K.H. Tacke, Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels, Mater. Sci. Forum, 500-501(2005), p. 387. doi: 10.4028/www.scientific.net/MSF.500-501.387
      [29]
      R.T.V. Tol, L. Zhao, and J. Sietsma, Kinetics of austenite decomposition in manganese-based steel, Acta Mater., 64(2014), p. 33. doi: 10.1016/j.actamat.2013.10.037
      [30]
      H.K.D.H. Bhadeshia, Bainite: Overall transformation kinetics, J. Phys. Colloq., 43(1982), p. C4443.
      [31]
      A.M. Ravi, J. Sietsma, and M.J. Santofimia, Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels, Acta Mater., 105(2016), p. 155. doi: 10.1016/j.actamat.2015.11.044
      [32]
      X.J. Zhao, Z.N. Yang, F.C. Zhang, X.Y. Long, and C. Chen, Acceleration of bainitic transformation by introducing AlN in medium carbon steel, Mater. Sci. Technol., 35(2019), No. 2, p. 147. doi: 10.1080/02670836.2018.1543107

    Catalog


    • /

      返回文章
      返回