留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 3
Mar.  2020

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2423
  • HTML全文浏览量:  540
  • PDF下载量:  53
  • 被引次数: 0
Jing Ma, Gui-qin Fu, Wei Li, and Miao-yong Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 310-318. https://doi.org/10.1007/s12613-019-1914-6
Cite this article as:
Jing Ma, Gui-qin Fu, Wei Li, and Miao-yong Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp. 310-318. https://doi.org/10.1007/s12613-019-1914-6
引用本文 PDF XML SpringerLink
研究论文

TiO2对含铬高钛熔分渣熔化性能和黏度的影响

  • Research Article

    Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag

    + Author Affiliations
    • A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag (CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63wt% to 42.63wt% was conducted. The melting properties were investigated with a melting-point apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.

    • loading
    • [1]
      T. Hu, X.W. Lv, and C.G. Bai, Enhanced reduction of coal-containing titanomagnetite concentrates briquette with multiple layers in rotary hearth furnace, Steel Res. Int., 87(2016), No. 4, p. 494. doi: 10.1002/srin.201500119
      [2]
      H.G. Du, Principle of Smelting of Vanadium-Bearing Titanomagnetite in Blast Furnace, Science Press, Beijing, 1996, p. 1.
      [3]
      S.T. Yang, M. Zhou, T. Jiang, S.F. Guan, W.J. Zhang, and X.X. Xue, Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1353. doi: 10.1007/s12613-016-1358-1
      [4]
      X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior, ISIJ Int., 53(2013), No. 7, p. 1115. doi: 10.2355/isijinternational.53.1115
      [5]
      H.M. Long, T.J. Chun, P. Wang, Q.M. Meng, Z.X. Di, and J.X. Li, Grinding kinetics of vanadium-titanium magnetite concentrate in a damp mill and its properties, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1765. doi: 10.1007/s11663-016-0644-7
      [6]
      C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction-melting-magnetic separation processing, JOM, 69(2017), No. 10, p. 1801. doi: 10.1007/s11837-017-2507-3
      [7]
      T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Reduction behavior of Panzhihua titanomagnetite concentrates with coal, Metal. Mater. Trans. B, 44(2013), No. 2, p. 252. doi: 10.1007/s11663-012-9783-7
      [8]
      Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, J. Alloys Compd., 706(2017), p. 546. doi: 10.1016/j.jallcom.2017.02.264
      [9]
      L. Kolbeinsen, Modelling of DRI processes with two simultaneously active reducing gases, Steel Res. Int., 81(2010), No. 10, p. 819. doi: 10.1002/srin.201000144
      [10]
      E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, and J. Hou, Influences of technological parameters on smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates, J. Iron Steel Res. Int., 23(2016), No. 7, p. 655. doi: 10.1016/S1006-706X(16)30102-9
      [11]
      T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process, Metals, 6(2016), No. 5, p. 107. doi: 10.3390/met6050107
      [12]
      L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, and J.S. Jang, Effect of perovskite phase precipitation on viscosity of Ti-bearing blast furnace slag under the dynamic oxidation condition, J. Non-Cryst. Solids, 352(2006), No. 2, p. 123. doi: 10.1016/j.jnoncrysol.2005.11.012
      [13]
      J. Li, Z.T. Zhang, and X.D. Wang, Precipitation behavior of Ti enriched phase in Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 6, p. 414. doi: 10.1179/1743281211Y.0000000055
      [14]
      J. Li, Z.T. Zhang, M. Zhang, M. Guo, and X.D. Wang, The influence of SiO2 on the extraction of Ti element from Ti-bearing blast furnace slag, Steel Res. Int., 82(2011), No. 6, p. 607. doi: 10.1002/srin.201000217
      [15]
      S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, L.Z. Yang, and M.J. Tang, Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace, JOM, 71(2019), No. 1, p. 323. doi: 10.1007/s11837-018-2932-y
      [16]
      Y.R. Liu, J.L. Zhang, Z.J. Liu, and X.D. Xing, Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 760. doi: 10.1007/s12613-016-1290-4
      [17]
      G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367. doi: 10.2355/isijinternational.55.1367
      [18]
      E. Park and O. Ostrovski, Reduction of titania-ferrous ore by carbon monoxide, ISIJ Int., 43(2003), No. 9, p. 1316. doi: 10.2355/isijinternational.43.1316
      [19]
      E. Park and O. Ostrovski, Reduction of titania-ferrous ore by hydrogen, ISIJ Int., 44(2004), No. 6, p. 999. doi: 10.2355/isijinternational.44.999
      [20]
      K. Huitu, M. Helle, H. Helle, M. Kekkonen, and H. Saxen, Optimization of midrex direct reduced iron use in ore-based steelmaking, Steel Res. Int., 86(2015), No. 5, p. 456. doi: 10.1002/srin.201400091
      [21]
      W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Gas-based direct reduction of Hongge vanadium titanomagnetite-oxidized pellet and melting separation of the reduced pellet, Steel Res. Int., 88(2017), No. 1, art. No. 1600120.
      [22]
      W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets, Ironmaking Steelmaking, 44(2017), No. 4, p. 294. doi: 10.1080/03019233.2016.1210751
      [23]
      K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu, Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags, Steel Res. Int., 88(2016), No. 5, art. No. 1600296.
      [24]
      Z.Y. Chang, K.X. Jiao, J.L. Zhang, X.J. Ning, and Z.Q. Liu, Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis, ISIJ Int., 58(2018), No. 12, p. 2173. doi: 10.2355/isijinternational.ISIJINT-2018-379
      [25]
      H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150. doi: 10.1002/srin.201100249
      [26]
      Y.H. Gao, L.T. Bian, and Z.Y. Liang, Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag, Steel Res. Int., 86(2015), No. 4, p. 386. doi: 10.1002/srin.201400039
      [27]
      R.Z. Xu, J.L. Zhang, R.Y. Ma, K.X. Jiao, and Y.A. Zhao, Influence of TiO2 on the viscosity of a high alumina slag and on carbon brick corrosion, Steel Res. Int., 89(2018), art. No. 1700353.
      [28]
      J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Influence of TiO2 and basicity on viscosity of Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 133. doi: 10.1179/1743281211Y.0000000064
      [29]
      Il Sohn, W.L. Wang, H. Matsuura, F. Tsukihashi, and D.J. Min, Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 mass% Al2O3 and 10 mass% MgO, ISIJ Int., 52(2012), No. 1, p. 158. doi: 10.2355/isijinternational.52.158
      [30]
      K. Hu, X.W. Lv S.P. Li, W. Lv, B. Song, and K.X. Han, Viscosity of TiO2–FeO–Ti2O3–SiO2–MgO–CaO–Al2O3 for high-titania slag smelting process, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1963. doi: 10.1007/s11663-018-1284-x
      [31]
      M.R. Yang, X.W. Lv, R.R. Wei, and C.G. Bai, Wetting behavior of TiO2 by calcium ferrite slag at 1523 K, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2667. doi: 10.1007/s11663-018-1360-2
      [32]
      J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn, High-temperature wettability and structure of the TiO2–MnO–SiO2–Al2O3 welding flux system, J. Non-Cryst. Solids, 432(2016), Part B, p. 218.
      [33]
      X.J. Dong, H.Y. Sun, X.F. She, Q.G. Xue, and J.S. Wang, Viscosity characteristics of TiO2–Al2O3–CaO–SiO2 fully liquid slags with high TiO2 content and low mass ratio of CaO to SiO2, J. Univ. Sci. Technol. Beijing, 35(2013), No. 10, p. 1297. doi: 10.13374/j.issn1001-053x.2013.10.013
      [34]
      B.O. Mysen, F.J. Ryerson, and D. Virgo, The influence of TiO2 on the structure and derivative properties of silicate melts, Am. Mineral., 65(1980), No. 11-12, p. 1150.

    Catalog


    • /

      返回文章
      返回