Cite this article as: |
Emile Mukiza, Ling-ling Zhang, and Xiao-ming Liu, Durability and microstructure analysis of the road base material prepared from red mud and flue gas desulfurization fly ash, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 555-568. https://doi.org/10.1007/s12613-019-1915-5 |
The present study aimed to investigate the durability and microstructure evolution of road base materials (RBM) prepared from red mud and flue gas desulfurization fly ash. The durability testing showed that the strength of RBM with the blast furnace slag addition of 1wt%, 3wt% and 5wt% reached 3.81, 4.87, and 5.84 MPa after 5 freezing–thawing (F–T) cycles and reached 5.21, 5.75, and 6.98 MPa after 20 weting–drying (W–D) cycles, respectively. The results also indicated that hydration products were continuously formed even during W–D and F–T exposures, resulting in an increase of the strength and durability of RBM. The observed increase of macropores (>1 μm) after F–T and W–D exposures suggested that the mechanism of RBM deterioration is pore enlargement due to cracks that develop inside their matrix. Moreover, the F–T exposure showed a greater negative effect on the durability of RBM compared to the W–D exposure. The leaching tests showed that sodium and heavy metals were solidified below the minimum requirement, which indicates that these wastes are suitable for use as a natural material replacement in road base construction.
[1] |
W.C. Liu, J.K. Yang, and B. Xiao, Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, J. Hazard. Mater., 161(2009), No. 1, p. 474. doi: 10.1016/j.jhazmat.2008.03.122
|
[2] |
K. Jayasankar, P.K. Ray, A.K. Chaubey, A. Padhi, B.K. Satapathy, and P.S. Mukherjee, Production of pig iron from red mud waste fines using thermal plasma technology, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 679. doi: 10.1007/s12613-012-0613-3
|
[3] |
X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lü, and W.G. Zhang, Recovery of alkali and alumina from Bayer red mud by the calcification–carbonation method, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 257. doi: 10.1007/s12613-016-1234-z
|
[4] |
N. Zhang, H.X. Li, and X.M. Liu, Hydration kinetics of cementitious materials composed of red mud and coal gangue, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1215. doi: 10.1007/s12613-016-1341-x
|
[5] |
Y.T. Xu, B. Yang, X.M. Liu, S. Gao, D.S. Li, E. Mukiza, and H.J. Li., Investigation of the medium calcium based non-burnt brick made by red mud and fly ash: Durability and hydration characteristics, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 983. doi: 10.1007/s12613-019-1814-9
|
[6] |
E. Mukiza, L.L. Zhang, X.M. Liu, and N. Zhang, Utilization of red mud in road base and subgrade materials: A review, Resour. Conserv. Recycl., 141(2019), p. 187. doi: 10.1016/j.resconrec.2018.10.031
|
[7] |
M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36(2010), No. 3, p. 327. doi: 10.1016/j.pecs.2009.11.003
|
[8] |
B.R. Parhi, S.K. Sahoo, S.C. Mishra, B. Bhoi, R.K. Paramguru, and B.K. Satapathy, Upgradation of bauxite by molecular hydrogen and hydrogen plasma, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1141. doi: 10.1007/s12613-016-1333-x
|
[9] |
X.P. Wang, T.C. Sun, J. Kou, Z.C. Li, and Y. Tian, Feasibility of co-reduction roasting of a saprolitic laterite ore and waste red mud, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 591. doi: 10.1007/s12613-018-1606-7
|
[10] |
P.E. Tsakiridis, S. Agatzini-Leonardou, and P. Oustadakis, Red mud addition in the raw meal for the production of Portland cement clinker, J. Hazard. Mater., 116(2004), No. 1-2, p. 103. doi: 10.1016/j.jhazmat.2004.08.002
|
[11] |
Y.B. Zong, W.H. Chen, Y. Fan, T.L. Yang, Z.B. Liu, and D.Q. Cang, Complementation in the composition of steel slag and red mud for preparation of novel ceramics, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1010. doi: 10.1007/s12613-018-1651-2
|
[12] |
W.G. Shen, M.K. Zhou, W. Ma, J.Q. Hu, and Z. Cai, Investigation on the application of steel slag–fly ash–phosphogypsum solidified material as road base material, J. Hazard. Mater., 164(2009), No. 1, p. 99. doi: 10.1016/j.jhazmat.2008.07.125
|
[13] |
P. Newman, K. Hargroves, C. Desha, L. Whistler, A. Farr, K.J. Wilson, and L. Surawski, Reducing the Environmental Impact of Road Construction, Sustainable Built Environment National Research Centre, Brisbane, 2012.
|
[14] |
Y.H. Zhang, W. Chen, G.C. Lv, F.Z. Lv, P.K. Chu, W.M. Guo, B.L. Cui, R. Zhang, and H. Wang, Adsorption of polyvinyl alcohol from wastewater by sintered porous red mud, Water Sci. Technol., 65(2012), No. 11, p. 2055. doi: 10.2166/wst.2012.114
|
[15] |
H. Sutar, S.C. Mishra, S.K. Sahoo, A. P. Chakraverthy , and H.S. Maharana, Progress of red mud utilization: An Overview, Am. Chem. Sci. J., 4(2014), No. 3, p. 255. doi: 10.9734/ACSJ/2014/7258
|
[16] |
N. G. Reddy and K. S. Chandra, Characterization and comprehensive utilization of red mud—An overview, Int. J. Sci. Res. Dev., 2(2014), No. 1, p. 670.
|
[17] |
I. Skrzypczak, W. Radwański, and T. Pytlowany, Durability vs technical—The usage properties of road pavements, E3S Web Conf., 45(2018), art. No. 0082.
|
[18] |
N. Khoury and M.M. Zaman, Durability of stabilized base courses subjected to wet–dry cycles, Int. J. Pavement Eng., 8(2007), No. 4, p. 265. doi: 10.1080/10298430701342874
|
[19] |
A.E.A. El-Maaty Behiry Behiry, Utilization of a new by-product material for soft subgrade soil stabilization, Open Access Lib. J., 1(2014), No. 3, p. 1. doi: 10.4236/oalib.1100711
|
[20] |
J.M. Zhang and C. Li, Experimental study on lime and fly ash-stabilized sintered red mud in road base, J. Test. Eval., 46(2018), No. 4, p. 1539. doi: 10.1520/JTE20170215
|
[21] |
X.M. Liu, B.W. Tang, H.F. Yin, and E. Mukiza, Durability and environmental performance of Bayer red mud–coal gangue based road base material, Chin. J. Eng., 40(2018), No. 4, p. 438.
|
[22] |
X.Q. Song, M. Jiang, and P.W. Xiong, Analysis of the thermophysical properties and influencing factors of various rock types from the guizhou province, E3S Web Conf., 53(2018), art. No. 03059,
|
[23] |
C.H.V. Hanumanth Rao, N.P. Ganapati, P.V.V. Satyanayarana, and S. Adiseshu, Application of GGBS stabilized red mud in road construction, IOSR J. Eng., 2(2012), No. 8, p. 14. doi: 10.9790/3021-02841420
|
[24] |
J.M. Khatib, P.S. Mangat, and L. Wright, Early age porosity and pore size distribution of cement paste with flue gas desulphurisation (Fgd) waste, J. Civ. Eng. Manage., 19(2013), No. 5, p. 622. doi: 10.3846/13923730.2013.793609
|
[25] |
H. Dong, P. Gao, and G. Ye, Characterization and comparison of capillary pore structures of digital cement pastes, Mater. Struct., 50(2017), No. 2, p. 154. doi: 10.1617/s11527-017-1023-9
|
[26] |
A. Fernández-Jiménez, F. Puertas, I. Sobrados, and J. Sanz, Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator, J. Am. Ceram. Soc., 86(2003), No. 8, p. 1389. doi: 10.1111/j.1151-2916.2003.tb03481.x
|
[27] |
A. Uchaipichat, Influence of repeated wetting-drying process on unconfined compressive strength of cement modified crushed rock base, Electron. J. Geotech. Eng., 20(2015), No. 13, p. 5151.
|
[28] |
P.M. Wang and X.P. Liu, Effect of temperature on the hydration process and strength development in blends of Portland cement and activated coal gangue or fly ash, J. Zhejiang Univ. Sci. A, 12(2011), No. 2, p. 162. doi: 10.1631/jzus.A1000385
|
[29] |
S. Hossain, L.W. Kong, and Y. Song, Effect of drying–wetting cycles on saturated shear strength of undisturbed residual soils, Am. J. Civ. Eng., 4(2016), No. 4, p. 143. doi: 10.11648/j.ajce.20160404.13
|
[30] |
T.C. Ling, K.H. Mo, L. Qu, J.J. Yang, and L. Guo, Mechanical strength and durability performance of autoclaved lime-saline soil brick, Constr. Build. Mater., 146(2017), p. 403. doi: 10.1016/j.conbuildmat.2017.04.106
|
[31] |
M.I. Mousa, M.G. Mahdy, A.H. Abdel-reheem, and A.Z. Yehia, Self-curing concrete types; water retention and durability, Alexandria Eng. J., 54(2015), No. 3, p. 565. doi: 10.1016/j.aej.2015.03.027
|
[32] |
A. Jiménez and M. Prieto, Thermal stability of ettringite exposed to atmosphere: implications for the uptake of harmful Ions by cement, Environ. Sci. Technol., 49(2015), No. 13, p. 7957. doi: 10.1021/acs.est.5b00536
|
[33] |
K.P. Teixeira, I.P. Rocha, L. de SáCarneiro, J. Flores, E.A. Dauer, and A. Ghahremaninezhad, The effect of curing temperature on the properties of cement pastes modified with TiO2 nanoparticles, Materials, 9(2016), No. 11, p. 952. doi: 10.3390/ma9110952
|
[34] |
X.M. Liu, X.B. Zhao, H.F. Yin, J.L. Chen, and N. Zhang, Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: Hydration characteristics and heavy metals solidification behavior, J. Hazard. Mater., 349(2018), p. 262. doi: 10.1016/j.jhazmat.2017.12.072
|
[35] |
N. Zhang, H.X. Li, Y.Z. Zhao, and X.M. Liu, Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag, J. Hazard. Mater., 306(2016), p. 67. doi: 10.1016/j.jhazmat.2015.11.055
|
[36] |
E. Mukiza, L.L. Zhang, X.M. Liu, and N. Zhang, Preparation and characterization of a red mud-based road base material: Strength formation mechanism and leaching characteristics, Constr. Build. Mater., 220(2019), p. 297. doi: 10.1016/j.conbuildmat.2019.06.027
|
[37] |
X. Pardal, F. Brunet, T. Charpentier, I. Pochard, and A. Nonat, 27Al and 29Si solid-state NMR characterization of calcium–aluminosilicate–hydrate, Inorg. Chem., 51(2012), No. 3, p. 1827. doi: 10.1021/ic202124x
|
[38] |
Z.H. Wang, S.H. Ma, S.L. Zheng, and X.H. Wang, Incorporation of Al and Na in hydrothermally synthesized tobermorite, J. Am. Ceram. Soc., 100(2017), No. 2, p. 792. doi: 10.1111/jace.14599
|