Abstract:
Al composites are of interest due to their appropriate ratio of strength to weight. In our research, an Al/Co
3O
4 nanocomposite was generated using a sintering technique. The powders of Al with various Co
3O
4 nanoparticle contents (0wt%, 0.5wt%, 1.0wt%, 1.5wt%, 2.0wt%, and 2.5wt%) were first blended using planetary milling for 30 min, and compressed in a cylindrical steel mold with a diameter of 1 cm and a height of 5 cm at a pressure of 80 MPa. The samples were evaluated with X-ray diffractometry (XRD), scanning electron microscopy (SEM), Vickers hardness, and a vibrating sample magnetometer (VSM). Although the crystallite size of the Al particles remained constant at 7–10 nm, the accumulation of nanoparticles in the Al particle interspace increased the structural tensile strain from 0.0045 to 0.0063, the hardness from HV 28 to HV 52 and the magnetic saturation from 0.044 to 0.404 emu/g with an increase in Co
3O
4 nanoparticle content from 0wt% to 2.5wt%.