Cite this article as:

Gurmail Singh, Niraj Bala, and Vikas Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp.401-416. https://dx.doi.org/10.1007/s12613-019-1946-y
Gurmail Singh, Niraj Bala, and Vikas Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, pp.401-416. https://dx.doi.org/10.1007/s12613-019-1946-y
引用本文 PDF XML SpringerLink

HOVF喷涂Ni–22Cr–10Al–1Y 和Ni–22Cr–10Al–1Y–SiC (N)涂层对ASTM-SA213-T22钢组织和热腐蚀行为的影响

Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel

Abstract: The present paper deals with the investigation of microstructure and high-temperature hot corrosion behavior of high-velocity oxy fuel (HVOF)-produced coatings. Two powder coating compositions, namely, Ni22Cr10Al1Y alloy powder and Ni22Cr10Al1Y (80wt%; micro-sized)–silicon carbide (SiC) (20wt%; nano (N)) powder, were deposited on a T-22 boiler tube steel. The hot corrosion behavior of bare and coated steels was tested at 900°C for 50 cycles in Na2SO4–60wt%V2O5 molten-salt environment. The kinetics of corrosion was established with weight change measurements after each cycle. The microporosity and microhardness of the as-coated samples have been reported. The X-ray diffraction, field emission-scanning electron microscopy/energy dispersive spectroscopy, and X-ray mapping characterization techniques have been utilized for structural analysis of the as-coated and hot-corroded samples. The results showed that both coatings were deposited with a porosity less than 2%. Both coated samples revealed the development of harder surfaces than the substrate. During hot corrosion testing, the bare T22 steel showed an accelerated corrosion in comparison with its coated counterparts. The HVOF-sprayed coatings were befitted effectively by maintaining their adherence during testing. The Ni22Cr10Al1Y–20wt%SiC (N) composite coating was more effective than the Ni–22Cr–10Al–1Y coating against corrosion in the high-temperature fluxing process.

 

/

返回文章
返回