留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  3041
  • HTML全文浏览量:  627
  • PDF下载量:  124
  • 被引次数: 0
Yan-kun Ma, Bai-sheng Nie, Xue-qiu He, Xiang-chun Li, Jun-qing Meng,  and Da-zhao Song, Mechanism investigation on coal and gas outburst: An overview, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 872-887. https://doi.org/10.1007/s12613-019-1956-9
Cite this article as:
Yan-kun Ma, Bai-sheng Nie, Xue-qiu He, Xiang-chun Li, Jun-qing Meng,  and Da-zhao Song, Mechanism investigation on coal and gas outburst: An overview, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 872-887. https://doi.org/10.1007/s12613-019-1956-9
引用本文 PDF XML SpringerLink
特约综述

煤与瓦斯突出机理研究综述

  • Invited Review

    Mechanism investigation on coal and gas outburst: An overview

    + Author Affiliations
    • Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities. After about 150 years of exploration, the mechanisms of outbursts remain unclear to date. Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal, laboratory-scale outburst experiments and numerical modeling, mine-site investigations, and doctrines of outburst mechanisms. Outburst mechanisms are divided into two categories: single-factor and multi-factor mechanisms. The multi-factor mechanism is widely accepted, but all statistical phenomena during a single outburst cannot be explained using present knowledge. Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation. The most appealing research is the microscopic process of the interaction between coal and gas. Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal. Outburst experiments can compensate for the deficiency of first-hand observation at the scene. Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions, including stratigraphic distribution, gas occurrence, and geological structure, are important. Future studies can explore outburst mechanisms at the microscale.

    • loading
    • [1]
      V. Hudecek, Analysis of safety precautions for coal and gas outburst-hazardous strata, J. Min. Sci., 44(2008), No. 5, p. 464. doi: 10.1007/s10913-008-0051-9
      [2]
      J. Shepherd, L.K. Rixon, and L. Griffiths, Outbursts and geological structures in coal mines: A review, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1981), No. 4, p. 267. doi: 10.1016/0148-9062(81)91192-X
      [3]
      Department of Mineral Resources, Outburst Mining Guideline, Coal Mining Inspectorate and Engineering Branch, New South Wales, 1995, p. 3.
      [4]
      R.M. Flores, Coalbed methane: From hazard to resource, Int. J. Coal Geol, 35(1998), No. 1-4, p. 3. doi: 10.1016/S0166-5162(97)00043-8
      [5]
      C.J. Fan, S. Li, M.K. Luo, W.Z. Du, and Z.H. Yang, Coal and gas outburst dynamic system, Int. J. Min. Sci. Technol, 27(2017), No. 1, p. 49. doi: 10.1016/j.ijmst.2016.11.003
      [6]
      X.Q. He, E.Y. Wang, B.S. Nie, M.J. Liu, and L. Zhang, Electromagnetic Dynamics of Coal or Rock Rheology, Science Press, Beijing, 2003, p. 7.
      [7]
      Q.X. Yu, Study on the threshold gas pressure in coal and gas outburst, J. China Univ. Min. Technol., 1(1990), No. 1, p. 60.
      [8]
      Q.T. Hu, Study on the Mechanical Mechanism of Coal and Gas Outburst and Its Application [Dissertation], China University of Mining & Technology (Beijing), Beijing, 2007.
      [9]
      Y.X. Cao, D.D. He, and D.C. Glick, Coal and gas outbursts in footwalls of reverse faults, Int. J. Coal Geol., 48(2001), No. 1-2, p. 47. doi: 10.1016/S0166-5162(01)00037-4
      [10]
      Y.X. Cao, A. Davis, R.X. Liu, X.W. Liu, and Y.G. Zhang, The influence of tectonic deformation on some geochemical properties of coals—A possible indicator of outburst potential, Int. J. Coal Geol., 53(2003), No. 2, p. 69. doi: 10.1016/S0166-5162(02)00077-0
      [11]
      L. Chen, E. Wang, J.C. Ou, and J.W. Fu, Coal and gas outburst hazards and factors of the No. B-1 coalbed, Henan, China, Geosci. J., 22(2018), No. 1, p. 171. doi: 10.1007/s12303-017-0024-6
      [12]
      A.J. Havgraves, Instantaneous outbursts of coal and gas—A review, Proc. Australas. Inst. Min. Metall., 186(1983), p. 1.
      [13]
      J.L. Cao and G. Fu, Statistical analysis of unsafe act reasons in coal and gas outburst accidents, Ind. Saf. Environ. Prot., 42(2016), No. 12, p. 37.
      [14]
      K. Jin, Y.P. Cheng, T. Ren, W. Zhao, Q.Y. Tu, J. Dong, Z.Y. Wang, and B. Hu, Experimental investigation on the formation and transport mechanism of outburst coal–gas flow: Implications for the role of gas desorption in the development stage of outburst, Int. J. Coal Geol., 194(2018), p. 45. doi: 10.1016/j.coal.2018.05.012
      [15]
      G.Z. Yin, C.B. Jiang, J.G. Wang, J. Xu, D.M. Zhang, and G. Huang, A new experimental apparatus for coal and gas outburst simulation, Rock Mech. Rock Eng., 49(2016), No. 5, p. 2005. doi: 10.1007/s00603-015-0818-7
      [16]
      Q.Y. Tu, Y.P. Cheng, P.K. Guo, J.Y. Jiang, L. Wang, and R. Zhang, Experimental study of coal and gas outbursts related to gas-enriched areas, Rock Mech. Rock Eng., 49(2016), No. 9, p. 3769. doi: 10.1007/s00603-016-0980-6
      [17]
      J.P. Mathews and A.L. Chaffee, The molecular representations of coal—A review, Fuel, 96(2012), p. 1. doi: 10.1016/j.fuel.2011.11.025
      [18]
      X.Q. He, X.F. Liu, B.S. Nie, and D.Z. Song, FTIR and Raman spectroscopy characterization of functional groups in various rank coals, Fuel, 206(2017), p. 555. doi: 10.1016/j.fuel.2017.05.101
      [19]
      N.D. Rus'ianova, N.E. Maksimova, V.S. Jdanov, and V.I. Butakova, Structure and reactivity of coals, Fuel, 69(1990), No. 11, p. 1448. doi: 10.1016/0016-2361(90)90128-D
      [20]
      A. Marzec, Towards an understanding of the coal structure: A review, Fuel Process. Technol., 77-78(2002), p. 25. doi: 10.1016/S0378-3820(02)00045-0
      [21]
      Y.G. Zhang, Z.M. Zhang, and Y.X. Cao, Deformed-coal structure and control to coal–gas outburst, J. China Coal Soc., 32(2007), No. 3, p. 281.
      [22]
      H.J. Ji, Z.H. Li, Y.L. Yang, S.B. Hu, and Y.J. Peng, Effects of organic micromolecules in coal on its pore structure and gas diffusion characteristics, Transp. Porous Media, 107(2015), No. 2, p. 419. doi: 10.1007/s11242-014-0446-9
      [23]
      Y.L. Yang, J.J. Sun, Z.H. Li, J.H. Li, X.Y. Zhang, L.W. Liu, D.C. Yan, and Y.B. Zhou, Influence of soluble organic matter on mechanical properties of coal and occurrence of coal and gas outburst, Powder Technol., 332(2018), p. 8. doi: 10.1016/j.powtec.2018.03.053
      [24]
      B.B. Beamish and P.J. Crosdale, Instantaneous outbursts in underground coal mines: An overview and association with coal type, Int. J. Coal Geol., 35(1998), No. 1-4, p. 27. doi: 10.1016/S0166-5162(97)00036-0
      [25]
      C.J. Wang, S.Q. Yang, X.W. Li, J.H. Li, and C.L. Jiang, Comparison of the initial gas desorption and gas-release energy characteristics from tectonically-deformed and primary-undeformed coal, Fuel, 238(2019), p. 66. doi: 10.1016/j.fuel.2018.10.047
      [26]
      H.Y. Li, Major and minor structural features of a bedding shear zone along a coal seam and related gas outburst, Pingdingshan coalfield, northern China, Int. J. Coal Geol., 47(2001), No. 2, p. 101. doi: 10.1016/S0166-5162(01)00031-3
      [27]
      E.V. Ulyanova, A.N. Molchanov, I.Y. Prokhorov, and V.G. Grinyov, Fine structure of Raman spectra in coals of different rank, Int. J. Coal Geol., 121(2014), p. 37. doi: 10.1016/j.coal.2013.10.014
      [28]
      Y.J. Dong, Y.Z. Han, Q.L. Hou, and J. Wang, Mechanochemistry mechanism of gas generation during coal deformation, J. China Coal Soc., 42(2017), No. 4, p. 942.
      [29]
      Q.L. Hou, Y.Z. Han, J. Wang, Y.J. Dong, and J.N. Pan, The impacts of stress on the chemical structure of coals: A mini-review based on the recent development of mechanochemistry, Sci. Bull., 62(2017), No. 13, p. 965. doi: 10.1016/j.scib.2017.06.004
      [30]
      W.P. Diamond and S.J. Schatzel, Measuring the gas content of coal: A review, Int. J. Coal Geol., 35(1998), No. 1-4, p. 311. doi: 10.1016/S0166-5162(97)00040-2
      [31]
      B.M. Krooss, F. Van Bergen, Y. Gensterblum, N. Siemons, H.J.M. Pagnier, and P. David, High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated pennsylvanian coals, Int. J. Coal Geol., 51(2002), No. 2, p. 69. doi: 10.1016/S0166-5162(02)00078-2
      [32]
      B. Kwiecinska, S. Pusz, B.J. Valentine, and ICCP, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter, Int. J. Coal Geol., 211(2019), art. No. 103203. doi: 10.1016/j.coal.2019.05.010
      [33]
      H. Evans and K. Brown, Coal structures in outbursts of coal and firedamp conditions, Min. Eng., 132(1973), p. 171.
      [34]
      B.S. Nie, X.F. Liu, L.L. Yang, J.Q. Meng, and X.C. Li, Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy, Fuel, 158(2015), p. 908. doi: 10.1016/j.fuel.2015.06.050
      [35]
      Y.X. Zhao, S.M. Liu, D. Elsworth, Y.D. Jiang, and J. Zhu, Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy, Energy Fuels, 28(2014), No. 6, p. 3704. doi: 10.1021/ef500487d
      [36]
      M.L.S. Oliveira, K.D. Boit, I.L. Schneider, E.C. Teixeira, T.J.C. Borrero, and L.F.O. Silva, Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies, J. Cleaner Prod., 188(2018), p. 662. doi: 10.1016/j.jclepro.2018.04.050
      [37]
      Y.L. Chen, Y. Qin, C.T. Wei, L.L. Huang, Q.M. Shi, C.F. Wu, and X.Y. Zhang, Porosity changes in progressively pulverized anthracite subsamples: Implications for the study of closed pore distribution in coals, Fuel, 225(2018), p. 612. doi: 10.1016/j.fuel.2018.03.164
      [38]
      S.H. Hou, X.M. Wang, X.J. Wang, Y.D. Yuan, S.D. Pan, and X.M. Wang, Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption, Int. J. Coal Geol., 183(2017), p. 1. doi: 10.1016/j.coal.2017.09.013
      [39]
      Q.H. Niu, J.N. Pan, L.W. Cao, Z.M. Ji, H.C. Wang, K. Wang, and Z.Z. Wang, The evolution and formation mechanisms of closed pores in coal, Fuel, 200(2017), p. 555. doi: 10.1016/j.fuel.2017.03.084
      [40]
      Y.D. Cai, D.M. Liu, Z.J. Pan, Y.B. Yao, J.Q. Li, and Y.K. Qiu, Pore structure of selected Chinese coals with heating and pressurization treatments, Sci. China Earth Sci., 57(2014), No. 7, p. 1567. doi: 10.1007/s11430-014-4855-y
      [41]
      L.L. He, Y.B. Melnichenko, M. Mastalerz, R. Sakurovs, A.P. Radlinski, and T.P. Blach, Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering, Energy Fuels, 26(2012), No. 3, p. 1975. doi: 10.1021/ef201704t
      [42]
      A.D. Alexeev, T.A. Vasilenko, and E.V. Ulyanova, Closed porosity in fossil coals, Fuel, 78(1999), No. 6, p. 635. doi: 10.1016/S0016-2361(98)00198-7
      [43]
      Y.X. Zhao, Y.F. Sun, S.M. Liu, K. Wang, and Y.D. Jiang, Pore structure characterization of coal by NMR cryoporometry, Fuel, 190(2017), p. 359. doi: 10.1016/j.fuel.2016.10.121
      [44]
      J.X. Liu, X.M. Jiang, X.Y. Huang, and S.H. Wu, Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle, Fuel, 89(2010), No. 12, p. 3884. doi: 10.1016/j.fuel.2010.07.001
      [45]
      J.N. Pan, H.T. Zhu, Q.L. Hou, H.C. Wang, and S. Wang, Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy, Fuel, 139(2015), p. 94. doi: 10.1016/j.fuel.2014.08.039
      [46]
      J.H. De Boer, The structure and properties of porous materials, [in] Proceedings of the Tenth Symposium of the Colston Research Society Held in the University of Bristol, London, 1958. p. 68.
      [47]
      A.D. Alexeev, E.V. Ulyanova, G.P. Starikov, and N.N. Kovriga, Latent methane in fossil coals, Fuel, 83(2004), No. 10, p. 1407. doi: 10.1016/j.fuel.2003.07.001
      [48]
      W.P. Jiang, X.Z. Song, and L.W. Zhong, Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method, J. China Coal Soc., 36(2011), No. 4, p. 609.
      [49]
      F.H. An, Y.P. Cheng, D.M. Wu, and L. Wang, The effect of small micropores on methane adsorption of coals from northern china, Adsorption, 19(2013), No. 1, p. 83. doi: 10.1007/s10450-012-9421-3
      [50]
      Y.B. Li, Y.G. Zhang, Z.M. Zhang, and B. Jiang, Experimental study on gas desorption of tectonic coal at initial stage, J. China Coal Soc., 38(2013), No. 1, p. 15.
      [51]
      W.J. Sun, Y.Y. Feng, C.F. Jiang, and W. Chu, Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers, Fuel, 155(2015), p. 7. doi: 10.1016/j.fuel.2015.03.083
      [52]
      Y. Yang, S.M. Liu, W. Zhao, and L. Wang, Intrinsic relationship between langmuir sorption volume and pressure for coal: Experimental and thermodynamic modeling study, Fuel, 241(2019), p. 105. doi: 10.1016/j.fuel.2018.12.008
      [53]
      B.Q. Lin and S.N. Zhou, Experimental investigation on the deformation law of coal body containing methane, J. China Univ. Min. Technol., 15(1986), No. 03, p. 12.
      [54]
      Y.P. Yao and S.N. Zhou, The mechanical property of coal containing gas, J. China Univ. Min. Technol., 17(1988), No. 1, p. 4.
      [55]
      S. Harpalani and G.L. Chen, Estimation of changes in fracture porosity of coal with gas emission, Fuel, 74(1995), No. 10, p. 1491. doi: 10.1016/0016-2361(95)00106-F
      [56]
      X.Q. He, E.Y. Wang, and H.Y Lin, Coal deformation and fracture mechanism under pore gas action, J. China Univ. Min. Technol., 25(1996), No. 1, p. 6.
      [57]
      S.Y. Wu and W. Zhao, Analysis of effective stress in adsorbed methane-coal system, Chin. J. Rock Mech. Eng, 24(2005), No. 10, p. 1674.
      [58]
      S.B. Hu, E.Y. Wang, and X.F. Liu, Effective stress of gas-bearing coal and its dual pore damage constitutive model, Int. J. Damage Mech., 25(2016), No. 4, p. 468. doi: 10.1177/1056789515604372
      [59]
      S.B. Hu, E.Y. Wang, and X.G. Kong, Damage and deformation control equation for gas-bearing coal and its numerical calculation method, J. Nat. Gas Sci. Eng., 25(2015), p. 166. doi: 10.1016/j.jngse.2015.04.039
      [60]
      S. Hol, C.J. Peach, and C.J. Spiers, Effect of 3-D stress state on adsorption of CO2 by coal, Int. J. Coal Geol., 93(2012), p. 1. doi: 10.1016/j.coal.2012.01.001
      [61]
      B.S. Nie, P.H. Fan, and X.C. Li, Quantitative investigation of anisotropic characteristics of methane-induced strain in coal based on coal particle tracking method with X-ray computer tomography, Fuel, 214(2018), p. 272. doi: 10.1016/j.fuel.2017.10.084
      [62]
      X.Q. Chen, A Numerical Model for Outbursts in Coal Mines [Dissertation], Univerisity of Alberta, Edmonton, 1994, p. 58.
      [63]
      S. Xue, Y.C. Wang, J. Xie, and G. Wang, A coupled approach to simulate initiation of outbursts of coal and gas—Model development, Int. J. Coal Geol., 86(2011), No. 2-3, p. 222. doi: 10.1016/j.coal.2011.02.006
      [64]
      F.H. An, Y.P. Cheng, L. Wang, and W. Li, A numerical model for outburst including the effect of adsorbed gas on coal deformation and mechanical properties, Comput. Geotech., 54(2013), p. 222. doi: 10.1016/j.compgeo.2013.07.013
      [65]
      G.Z. Yin, D.K. Wang, G. Huang, D.M. Zhang, and W.Z. Wang, A triaxial creep model for coal containing gas and its stability analysis, J. Coal Sci. Eng. China, 15(2009), No. 3, p. 248. doi: 10.1007/s12404-009-0306-3
      [66]
      G.Z. Yin, D.K. Wang, D.M. Zhang, and Z.A. Wei, Research on triaxial creep properties and creep model of coal containing gas, Chin. J. Rock Mech. Eng., 27(2008), No. S1, p. 2631.
      [67]
      N.N. Danesh, Z.W. Chen, L.D. Connell, M.S. Kizil, Z.J. Pan, and S.M. Aminossadati, Characterisation of creep in coal and its impact on permeability: An experimental study, Int. J. Coal Geol., 173(2017), p. 200. doi: 10.1016/j.coal.2017.03.003
      [68]
      I. Gray, Reservoir engineering in coal seams: Part 1—The physical process of gas storage and movement in coal seams, SPE Reservoir Eng., 2(1987), No. 1, p. 28. doi: 10.2118/12514-PA
      [69]
      X.C. Li, Y.Y. Guo, S.Y. Wu, and B.S. Nie, Mathematical model and numerical simulation of fluid–solid coupled flow of coal-bed gas considering swelling stress of adsorption, Chin. J. Rock Mech. Eng., 26(2007), No. S1, p. 2743.
      [70]
      E.Y. Wang, X.G. Kong, S.B. Hu, Z.H. Li, and Q.L. Liu, Multi-scale fractured coal gas–solid coupling model and its applications in engineering projects, Transp. Porous Media, 121(2018), No. 3, p. 703. doi: 10.1007/s11242-017-0981-2
      [71]
      K. Wang, F. Du, X. Zhang, L. Wang, and C.P. Xin, Mechanical properties and permeability evolution in gas-bearing coal–rock combination body under triaxial conditions, Environ. Earth Sci., 76(2017), No. 24, art. No. 815. doi: 10.1007/s12665-017-7162-z
      [72]
      D.J. Xue, H.W. Zhou, L. Kong, X.L. Tang, T. Zhao, H.Y. Yi, and Y.F. Zhao, Deformation analysis of transversely isotropic coal-rock mass with porous and cracks, Int. J. Min. Sci. Technol., 22(2012), No. 6, p. 809. doi: 10.1016/j.ijmst.2012.12.012
      [73]
      S.G. Wang, D. Elsworth, and J.S. Liu, Mechanical behavior of methane infiltrated coal: The roles of gas desorption, stress level and loading rate, Rock Mech. Rock Eng., 46(2013), No. 5, p. 945. doi: 10.1007/s00603-012-0324-0
      [74]
      D.N. Espinoza, J.M. Pereira, M. Vandamme, P. Dangla, and S. Vidal-Gilbert, Desorption-induced shear failure of coal bed seams during gas depletion, Int. J. Coal Geol., 137(2015), p. 142. doi: 10.1016/j.coal.2014.10.016
      [75]
      G.Z. Yin, D.M. Zhang and X.J. He, Creep experiment and theoretical model of gas-containing coal, Chin. J. Geotech. Eng., 31(2009), No. 4, p. 528.
      [76]
      G.Z. Yin, H. Wang, and D.M. Zhang, Creep experimental and theory model on coal containing gas under the condition of unloading confining pressure, J. China Coal Soc., 36(2011), No. 12, p. 1963.
      [77]
      G.Z. Yin, C.B. Jiang, J.G. Wang, and J. Xu, Combined effect of stress, pore pressure and temperature on methane permeability in anthracite coal: An experimental study, Transp. Porous Media, 100(2013), No. 1, p. 1. doi: 10.1007/s11242-013-0202-6
      [78]
      G.Z. Yin, C.B. Jiang, J.G. Wang, and J. Xu, Geomechanical and flow properties of coal from loading axial stress and unloading confining pressure tests, Int. J. Rock Mech. Min. Sci., 76(2015), p. 155. doi: 10.1016/j.ijrmms.2015.03.019
      [79]
      S.B. Yu, One-dimensional flow model for coal–gas outbursts and initiation criterion, Acta Mech. Sin., 8(1992), No. 4, p. 363. doi: 10.1007/BF02487176
      [80]
      J.Z. Fang, S.B. Yu, and Q.T. Tan, A lamination separation and fragmentation model of coal and gas outburst, J. China Coal Soc., 20(1995), No. 2, p. 149.
      [81]
      P. Guan, H.Y. Wang, and Y.X. Zhang, Mechanism of instantaneous coal outbursts, Geology, 37(2009), No. 10, p. 915. doi: 10.1130/G25470A.1
      [82]
      J. Bodziony, J. Krawczyk, and J. Topolnicki, Determination of the porosity distribution in coal briquettes by measurements of the gas filtration parameters in an outburst pipe, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(1994), No. 6, p. 661. doi: 10.1016/0148-9062(94)90006-X
      [83]
      J. Sobczyk, The influence of sorption processes on gas stresses leading to the coal and gas outburst in the laboratory conditions, Fuel, 90(2011), No. 3, p. 1018. doi: 10.1016/j.fuel.2010.11.004
      [84]
      N. Skoczylas, Laboratory study of the phenomenon of methane and coal outburst, Int. J. Rock Mech. Min. Sci., 55(2012), p. 102. doi: 10.1016/j.ijrmms.2012.07.005
      [85]
      A.D. Alexeev, V.N. Revva, N.A. Alyshev, and D.M. Zhitlyonok, True triaxial loading apparatus and its application to coal outburst prediction, Int. J. Coal Geol., 58(2004), No. 4, p. 245. doi: 10.1016/j.coal.2003.09.007
      [86]
      C.L. Jiang, L.H. Xu, X.W. Li, J. Tang, Y.J. Chen, S.X. Tian, and H.H. Liu, Identification model and indicator of outburst-prone coal seams, Rock Mech. Rock Eng., 48(2015), No. 1, p. 409. doi: 10.1007/s00603-014-0558-0
      [87]
      L.H. Xu and C.L. Jiang, Initial desorption characterization of methane and carbon dioxide in coal and its influence on coal and gas outburst risk, Fuel, 203(2017), p. 700. doi: 10.1016/j.fuel.2017.05.001
      [88]
      C.G. Cai, Experimental study on 3-D simulation of coal and gas outbursts, J. China Coal Soc., 29(2004), No. 1, p. 66.
      [89]
      S.J. Peng, J. Xu, H.W. Yang, and D. Liu, Experimental study on the influence mechanism of gas seepage on coal and gas outburst disaster, Saf. Sci., 50(2012), No. 4, p. 816. doi: 10.1016/j.ssci.2011.08.027
      [90]
      H.P. Wang, Q.H. Zhang, L. Yuan, J.H. Xue, Q.C. Li, and B. Zhang, gas outburst simulation system based on CSIRO model, Chin. J. Rock Mech. Eng., 34(2015), No. 11, p. 2301.
      [91]
      B.S. Nie, Y.K. Ma, S.T. Hu, and J.Q. Meng, Laboratory study phenomenon of coal and gas outburst based on a mid-scale simulation system, Sci. Rep., 9(2019), art. No. 15005. doi: 10.1038/s41598-019-51243-4
      [92]
      B. Zhou, J. Xu, S.J. Peng, J.B. Geng, and F.Z. Yan, Test system for the visualization of dynamic disasters and its application to coal and gas outburst, Int. J. Rock Mech. Min. Sci., 122(2019), art. No. 104083. doi: 10.1016/j.ijrmms.2019.104083
      [93]
      C. Zhang, J. Xu, G.Z. Yin, S.J. Peng, Q.X. Li, and Y. Chen, A novel large-scale multifunctional apparatus to study the disaster dynamics and gas flow mechanism in coal mines, Rock Mech. Rock Eng., 52(2019), No. 8, p. 2889. doi: 10.1007/s00603-018-1610-2
      [94]
      S.C. Li, Q.C. Li, H.P. Wang, L. Yuan, Y.Q. Zhang, J.H. Xue, B. Zhang, and J. Wang, A large-scale three-dimensional coal and gas outburst quantitative physical modeling system, J. China Coal Soc., 43(2018), No. S1, p. 121.
      [95]
      L. Paterson, A model for outbursts in coal, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 23(1986), No. 4, p. 327. doi: 10.1016/0148-9062(86)90644-3
      [96]
      S. Valliappan, and W.H. Zhang, Numerical modelling of methane gas migration in dry coal seams, Int. J. Numer. Anal. Methods Geomech., 20(1996), No. 8, p. 571. doi: 10.1002/(SICI)1096-9853(199608)20:8<571::AID-NAG840>3.0.CO;2-0
      [97]
      K. Barron and D. Kullmann, Modelling of outbursts at #26 colliery, glace bay, nova scotia. Part 2: Proposed outburst mechanism and model, Min. Sci. Technol., 11(1990), No. 3, p. 261. doi: 10.1016/0167-9031(90)90957-T
      [98]
      D. Kullmann and K. Barron, Modelling of outbursts at #26 colliery, glace bay, nova scotia. Part 3: Comparison of model results and field data, Min. Sci. Technol., 11(1990), No. 3, p. 269. doi: 10.1016/0167-9031(90)90969-Y
      [99]
      Y.Q. Tao, J. Xu, D. Liu, and Y.Q. Liang, Development and validation of THM coupling model of methane-containing coal, Int. J. Min. Sci. Technol., 22(2012), No. 6, p. 879. doi: 10.1016/j.ijmst.2012.12.009
      [100]
      Q.L. Liu, E.Y. Wang, X.G. Kong, Q. Li, S.B. Hu, and D.X. Li, Numerical simulation on the coupling law of stress and gas pressure in the uncovering tectonic coal by cross-cut, Int. J. Rock Mech. Min. Sci., 103(2018), p. 33. doi: 10.1016/j.ijrmms.2018.01.018
      [101]
      F. Otuonye and J. Sheng, A numerical simulation of gas flow during coal/gas outbursts, Geotech. Geol. Eng., 12(1994), No. 1, p. 15. doi: 10.1007/BF00425934
      [102]
      A.T. Zhou, K. Wang, T.F. Feng, J.W. Wang, and W. Zhao, Effects of fast-desorbed gas on the propagation characteristics of outburst shock waves and gas flows in underground roadways, Process Saf. Environ. Prot., 119(2018), p. 295. doi: 10.1016/j.psep.2018.08.016
      [103]
      S.K. Choi and M.B. Wold, A coupled geomechanical-reservoir model for the modelling of coal and gas outbursts, [in] O. Stephanson, ed., Coupled Thermo–hydro–mechanical–chemical Processes in Geo-systems: Fundamentals, modelling, experiments and applications, Elsevier Geo-Engineering Book Series, Vol. 2, Elsevier, 2004, p. 629.
      [104]
      T. Xu, C.A. Tang, T.H. Yang, W.C. Zhu, and J.S. Liu, Numerical investigation of coal and gas outbursts in underground collieries, Int. J. Rock Mech. Min. Sci., 43(2006), No. 6, p. 905. doi: 10.1016/j.ijrmms.2006.01.001
      [105]
      M.B. Wold, L.D. Connell, and S.K. Choi, The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining, Int. J. Coal Geol., 75(2008), No. 1, p. 1. doi: 10.1016/j.coal.2008.01.006
      [106]
      S. Xue, L. Yuan, J.F. Wang, Y.C. Wang, and J. Xie, A coupled dem and lbm model for simulation of outbursts of coal and gas, Int. J. Coal Sci. Technol., 2(2015), No. 1, p. 22. doi: 10.1007/s40789-015-0063-4
      [107]
      Y.C. Wang and S. Xue, Chapter 6. A Review on numerical models for coal and gas outbursts, [in] Y.G. Li, ed., Fault-Zone Guided Wave, Ground Motion, Landslide and Earthquake Forecast, Higher Education Press, Beijing, 2018, p.191.
      [108]
      B.F. Yu, On-site observations of coal and gas outburst process, Sichuan Coal Sci. Technol., 6(1980), No. 3, p. 50.
      [109]
      D.L. Sun, Q.T. Hu, and F.T. Miao, Motion state of coal–gas flow in the process of outburst, J. China Coal Soc., 37(2012), No. 3, p. 452.
      [110]
      R.D. Lama and J. Bodziony, Management of outburst in underground coal mines, Int. J. Coal Geol., 35(1998), No. 1-4, p. 83. doi: 10.1016/S0166-5162(97)00037-2
      [111]
      R. Cocuillet, Present knowledge of sudden outbursts of gas, Ann. Mines, (1959), p. 233.
      [112]
      B.N. Onopchuk, Some characteristics of gas bursts, Soviet Min., 12(1976), No. 4, p. 395. doi: 10.1007/BF02497371
      [113]
      B.N. Onopchuk, Mechanism of rock fracture in gas bursts, Soviet Min., 12(1976), No. 2, p. 198. doi: 10.1007/BF02497729
      [114]
      J. Litwiniszyn, A model for the initiation of coal–gas outbursts, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22(1985), No. 1, p. 39. doi: 10.1016/0148-9062(85)92592-6
      [115]
      J. Litwiniszyn, Remarks on the equations of state of outburst rocks regarded as a solid solution, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28(1991), No. 6, p. 501. doi: 10.1016/0148-9062(91)91125-B
      [116]
      J.G. Singh, A mechanism of outbursts of coal and gas, Min. Sci. Technol., 1(1984), No. 4, p. 269. doi: 10.1016/S0167-9031(84)90309-8
      [117]
      D.M. Hyman, Review of the Mechanisms of Gas Outbursts in Coal, US Department of the Interior, Bureau of Mines, 1987.
      [118]
      I.W. Farmer and F. D. Pooley, A hypothesis to explain the occurrence of outbursts in coal, based on a study of west wales outburst coal, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4(1967), No. 2, p. 189. doi: 10.1016/0148-9062(67)90043-5
      [119]
      R. D. Lama, Safe gas content threshold value for safety against outbursts in the mining of the Bulli seam, [in] Proceedings of International Symposium cum Workshop on Management and Control of High Gas Emissions and Outbursts in Underground Coal Mines, Wollongong, 1995, p. 175.
      [120]
      S.A. Khristianovich, On the outburst wave, Izv. Akad. Nauk SSSR. OTN, 1953, No. 12, p.1679.
      [121]
      M.T. Zhang, Z.H. Xu, Y.S. Pan, and Y.S. Zhao, A united instability theory on coal (rock) burst and outburst, J. China Coal Soc., 16(1991), No. 4, p. 5.
      [122]
      R. Lama and A. Saghafi, Overview of gas outbursts and unusual emissions, [in] Coal 2002: Coal Operators' Conference, Wollongong, 2002, p. 74.
      [123]
      Y.E. Nekrasovski, Mining of coal seams liable to outbursts of gas and coal, Ugletekhizdat, 1951.
      [124]
      B.B. Hodot, Coal and Gas Outburst, Translated by S.Z. Song and Y.A. Wang, China Industry Press, Beijing, 1966.
      [125]
      S.N. Zhou and X.Q. He, Rheological hypothesis of coal and methane outburst mechanism, J. China Univ. Min. Technol, 4(1990), No. 1, p. 15.
      [126]
      X. Choi and M. Wold, Study of the mechanisms of coal and gas outbursts using a new numerical modeling approach, [in] Coal 2004: Coal Operators' Conference, Wollongong, 2004, p. 181.
      [127]
      Q.T. Hu, S.N. Zhou, and X.Q. Zhou, Mechanical mechanism of coal and gas outburst process, J. China Coal Soc., 33(2008), No. 12, p. 1368.
      [128]
      C.L. Jiang, Study on the reasons for the delay of the coal and gas outburst, China Saf. Sci. J., 4(1994), No. 4, p. 28.
      [129]
      D.Y. Guo and D.X. Han, The stick-slip mechanism of coal and gas outburst, J. China Coal Soc., 28(2003), No. 6, p. 598.
      [130]
      D.Y. Guo, J.N. Li, and Y.K. Wang, Early-warning model of coal and gas outburst based on the stick-slip and catastrophe theory, J. Univ. Sci. Technol. Beijing, 35(2013), No. 11, p. 1407.
      [131]
      K.P. Chen, A new mechanistic model for prediction of instantaneous coal outbursts—Dedicated to the memory of Prof. Daniel D. Joseph, Int. J. Coal Geol., 87(2011), No. 2, p. 72. doi: 10.1016/j.coal.2011.04.012
      [132]
      Q.L. Hou, H.J. Li, J.J. Fan, Y.W. Ju, T.K. Wang, X.S. Li, and Y.D. Wu, Structure and coalbed methane occurrence in tectonically deformed coals, Sci. China Earth Sci., 55(2012), No. 11, p. 1755. doi: 10.1007/s11430-012-4493-1
      [133]
      X.C. Li, X.Q. He, and B.S. Nie, The possibility of gas hydrate existence in coal seams, Nat. Gas Ind., 28(2008), No. 3, p. 130.
      [134]
      T. Ohba, T. Omori, H. Kanoh, and K. Kaneko, Cluster structures of supercritical CH4 confined in carbon nanospaces with in situ high-pressure small-angle X-ray scattering and grand canonical Monte Carlo simulation, J. Phys. Chem. B, 108(2004), No. 1, p. 27. doi: 10.1021/jp0363646
      [135]
      M. Meng, Z.S. Qiu, R.Z. Zhong, Z.G. Liu, Y.F. Liu, and P.J. Chen, Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach, Chem. Eng. J., 368(2019), p. 847. doi: 10.1016/j.cej.2019.03.008
      [136]
      Y.B. Li, B. Jiang, and Y.G. Zhang, Low-threshold coal and gas outburst dynamic phenomenon and mechanism in Xinmi coal mining area, Coal Geol. Explor., 43(2015), No. 6, p. 1.
      [137]
      H.D. Chen, Y.P. Cheng, H.X. Zhou, and W. Li, Damage and permeability development in coal during unloading, Rock Mech. Rock Eng., 46(2013), No. 6, p. 1377. doi: 10.1007/s00603-013-0370-2
      [138]
      V.T. Presler, Modeling of air-gas and dynamic processes in driving development workings in the gas-bearing coal seams, J. Min. Sci., 38(2002), No. 2, p. 168. doi: 10.1023/A:1021167606258
      [139]
      P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, H.F. Wang, and K. Liu, Investigating the mechanical and acoustic emission characteristics of brittle failure around a circular opening under uniaxial loading, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1217. doi: 10.1007/s12613-019-1887-5
      [140]
      B.S. Nie and X.C. Li, Mechanism research on coal and gas outburst during vibration blasting, Saf. Sci., 50(2012), No. 4, p. 741. doi: 10.1016/j.ssci.2011.08.041
      [141]
      D. Li, J.F. Zhang, C.W. Wang, and F.X. Jiang, Propagation patterns of microseismic waves in rock strata during mining: An experimental study, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 531. doi: 10.1007/s12613-019-1761-5
      [142]
      W. Yang, H. Wang, Q.Y. Zhuo, B.Q. Lin, J.G. Zhang, C.Z. Lu, and M.H. Lin, Mechanism of water inhibiting gas outburst and the field experiment of coal seam infusion promoted by blasting, Fuel, 251(2019), p. 383. doi: 10.1016/j.fuel.2019.04.064
      [143]
      X.F. Liu and X.Q. He, Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals, Adsorption, 23(2017), No. 1, p. 3. doi: 10.1007/s10450-016-9811-z
      [144]
      V.N. Odintsev, Sudden outburst of coal and gas—Failure of natural coal as a solution of methane in a solid substance, J. Min. Sci., 33(1997), No. 6, p. 508. doi: 10.1007/BF02765629
      [145]
      E. Koken and A. Özarslan, New testing methodology for the quantification of rock crushability: Compressive crushing value (CCV), Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1227. doi: 10.1007/s12613-018-1675-7
      [146]
      B.S. Nie and X.Q. He, Nanopores characteristic of coal body and micro-mechanism of coal and gas outburst, [in] International Conference cum Second Anniversary of Collaborative Innovation Organization on Safe Intelligent Precision Coal Mining, Huainan, 2019.
      [147]
      Y.S. Pan, Integrated study on compound dynamic disaster of coal–gas outburst and rockburst, J. China Coal Soc., 41(2016), No. 1, p. 105.
      [148]
      L.Y. Zhu, Y.S. Pan, Z.H. Li, and L.M. Xu, Mechanisms of rockburst and outburst compound disaster in deep mine, J. China Coal Soc., 43(2018), No. 11, p. 3042.
      [149]
      B.B. Gao, Z.G. Wang, H.M. Li, and C.D. Su, Experimental study on the effect of outburst—Proneness of coal by gas pressure, J. China Coal Soc., 43(2018), No. S1, p. 140.
      [150]
      G.H. Zhang, Z.H. Ouyang, Q.X. Qi, H.Y. Li, Z.G. Deng, and J.J. Jiang, Experimental research on the influence of gas on coal burst tendency, J. China Coal Soc., 42(2017), No. 12, p. 3159.
      [151]
      X.L. Tang, Z.X. Jiang, S. Jiang, and Z. Li, Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods, Mar. Pet. Geol., 78(2016), p. 99. doi: 10.1016/j.marpetgeo.2016.09.010
      [152]
      P.F. Wang, Z.X. Jiang, L. Chen, L.S. Yin, Z. Li, C. Zhang, X.L. Tang, and G.Z. Wang, Pore structure characterization for the longmaxi and niutitang shales in the upper yangtze platform, south china: Evidence from focused ion beam he ion microscopy, nano-computerized tomography and gas adsorption analysis, Mar. Pet. Geol., 77(2016), p. 1323. doi: 10.1016/j.marpetgeo.2016.09.001
      [153]
      Y.X. Zhao, Y.F. Sun, S.M. Liu, Z.W. Chen, and L. Yuan, Pore structure characterization of coal by synchrotron radiation nano-CT, Fuel, 215(2018), p. 102. doi: 10.1016/j.fuel.2017.11.014
      [154]
      M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, Ptychographic X-ray computed tomography at the nanoscale, Nature, 467(2010), p. 436. doi: 10.1038/nature09419
      [155]
      M. Holler, A. Diaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution, Sci. Rep., 4(2014), art. No. 3857. doi: 10.1038/srep03857
      [156]
      Y.K. Liu, Y.Q. Xiong, Y. Li, and P.A. Peng, Effect of thermal maturation on chemical structure and nanomechanical properties of solid bitumen, Mar. Pet. Geol., 92(2018), p. 780. doi: 10.1016/j.marpetgeo.2017.12.008
      [157]
      C.X. Li, M. Ostadhassan, A. Abarghani, A. Fogden, and L.Y. Kong, Multi-scale evaluation of mechanical properties of the bakken shale, J. Mater. Sci., 54(2019), No. 3, p. 2133. doi: 10.1007/s10853-018-2946-4
      [158]
      K.L. Hull, Y.N. Abousleiman, Y. Han, G.A. Al-Muntasheri, P. Hosemann, S.S. Parker, and C.B. Howard, Nanomechanical characterization of the tensile modulus of rupture for kerogen-rich shale, SPE J., 22(2017), No. 4, p. 1024. doi: 10.2118/177628-PA
      [159]
      X.H. Tian, D.Z. Song, X.Q. He, H.F. Liu, W.X. Wang, and Z.L. Li, Surface microtopography and micromechanics of various rank coals, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1351. doi: 10.1007/s12613-019-1879-5

    Catalog


    • /

      返回文章
      返回