留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(14)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1413
  • HTML全文浏览量:  296
  • PDF下载量:  39
  • 被引次数: 0
Jun-wu Li, Xing Han, Rong-xia Chai, Fang-qin Cheng, Mei Zhang, and Min Guo, Metal-doped (Cu,Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 996-1006. https://doi.org/10.1007/s12613-019-1962-y
Cite this article as:
Jun-wu Li, Xing Han, Rong-xia Chai, Fang-qin Cheng, Mei Zhang, and Min Guo, Metal-doped (Cu,Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 996-1006. https://doi.org/10.1007/s12613-019-1962-y
引用本文 PDF XML SpringerLink
  • Research Article

    Metal-doped (Cu,Zn)Fe2O4 from integral utilization of toxic Zn-containing electric arc furnace dust: An environment-friendly heterogeneous Fenton-like catalyst

    + Author Affiliations
    • Pure metal-doped (Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust (EAFD) by solid-state reaction using copper salt as additive. The effects of pretreated EAFD-to-Cu2(OH)2CO3∙6H2O mass ratio, calcination time, and calcination temperature on the structure and catalytic ability were systematically studied. Under the optimum conditions, the decolorization efficiency and total organic carbon (TOC) removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0% and 45.0%, respectively, and the decolorization efficiency remained 83.0% after five recycles, suggesting that the as-prepared (Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability. The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions. More importantly, the toxicity characteristic leaching procedure (TCLP) analysis illustrated that the toxic Zn-containing EAFD was transformed into harmless (Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard (GB/31574—2015), further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.
    • loading
    • [1]
      V.N. Stathopoulos, A. Papandreou, D. Kanellopoulou, and C.J. Stournaras, Structural ceramics containing electric arc furnace dust, J. Hazard. Mater., 262(2013), p. 91. doi: 10.1016/j.jhazmat.2013.08.028
      [2]
      P.E. Tsakiridis, A. Katsiapi, and S. Agatzini-Leonardou, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning, J. Hazard. Mater., 179(2010), No. 1-3, p. 1. doi: 10.1016/j.jhazmat.2010.01.059
      [3]
      H.G. Wang, Y. Li, J.M. Gao, M. Zhang, and M. Guo, A novel hydrothermal method for zinc extraction and separation from zinc ferrite and electric arc furnace dust, Int. J. Miner. Metall. Mater., 23(2016), No. 2, p. 146. doi: 10.1007/s12613-016-1221-4
      [4]
      F. Pinakidou, M. Katsikini, E.C. Paloura, P. Kavouras, T. Kehagias, P. Komninou, T. Karakostas, and A. Erko, On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: A μ-XAFS and μ-XRF study, J. Hazard. Mater., 142(2007), No. 1-2, p. 297. doi: 10.1016/j.jhazmat.2006.08.016
      [5]
      H.W. Ma, K. Matsubae, K. Nakajima, M.S. Tsai, K.H. Shao, P.C. Chen, C.H. Lee, and T. Nagasaka, Substance flow analysis of zinc cycle and current status of electric arc furnace dust management for zinc recovery in Taiwan, Resour. Conserv. Recycl., 56(2011), No. 1, p. 134. doi: 10.1016/j.resconrec.2011.08.005
      [6]
      Y.C. Zhao and R. Stanforth, Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, J. Hazard. Mater., 80(2000), No. 1-3, p. 223. doi: 10.1016/S0304-3894(00)00305-8
      [7]
      C.C. Su and Y.H. Shen, Deflocculation and classification of electric arc furnace dust in aqueous solution, Sep. Sci. Technol., 44(2009), No. 8, p. 1816. doi: 10.1080/01496390902775299
      [8]
      B. Liu, S.G. Zhang, B.M. Steenari, and C. Ekberg, Synthesis and properties of SrFe12O19 obtained by solid waste recycling of oily cold rolling mill sludge, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 642. doi: 10.1007/s12613-019-1772-2
      [9]
      H.G. Wang, M. Zhang, and M. Guo, Utilization of Zn-containing electric arc furnace dust for multi-metal doped ferrite with enhanced magnetic property: From hazardous solid waste to green product, J. Hazard. Mater., 339(2017), p. 248. doi: 10.1016/j.jhazmat.2017.06.039
      [10]
      H.G. Wang, W.W. Liu, N.N. Jia, M. Zhang, and M. Guo, Facile synthesis of metal-doped Ni−Zn ferrite from treated Zn-containing electric arc furnace dust, Ceram. Int., 43(2017), No. 2, p. 1980. doi: 10.1016/j.ceramint.2016.10.164
      [11]
      J.M. Gao, M. Zhang, and M. Guo, Direct fabrication and characterization of metal doped magnesium ferrites from treated laterite ores by the solid state reaction method, Ceram. Int., 41(2015), No. 6, p. 8155. doi: 10.1016/j.ceramint.2015.03.030
      [12]
      E.G. Garrido-Ramírez, B.K.G. Theng, and M.L. Mora, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review, Appl. Clay Sci., 47(2010), No. 3-4, p. 182. doi: 10.1016/j.clay.2009.11.044
      [13]
      Y.B. Wang, H.Y. Zhao, M.F. Li, J. Fan, and G.H. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B, 147(2014), p. 534. doi: 10.1016/j.apcatb.2013.09.017
      [14]
      J.H. Ramirez, F.J. Maldonadohodar, A.F. Pérez-Cadenas, C. Moreno-Castilla, C.A. Costa, and L.M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B, 75(2007), No. 3-4, p. 312. doi: 10.1016/j.apcatb.2007.05.003
      [15]
      Y.F. Diao, Z.K. Yan, M. Guo, and X.D. Wang, Magnetic multi-metal co-doped magnesium ferrite nanoparticles: an efficient visible light-assisted heterogeneous Fenton-like catalyst synthesized from saprolite laterite ore, J. Hazard. Mater., 344(2018), p. 829. doi: 10.1016/j.jhazmat.2017.11.029
      [16]
      R. Sharma and S. Singhal, Spinel ferrite mediated photo-Fenton degradation of phenolic analogues: A detailed study employing two distinct inorganic oxidants, Clean Soil Air Water, 46(2018), No. 1, art. No. 1700605. doi: 10.1002/clen.201700605
      [17]
      G. Fan, T. Ji, and L. Feng, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals, Ind. Eng. Chem. Res., 51(2012), No. 42, p. 13639. doi: 10.1021/ie201933g
      [18]
      Y. Huang, C. Han, Y.Q. Liu, M.N. Nadagouda, L. Machala, K.E. O’Shea, V.K. Sharma, and D.D. Dionysiou, Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4, Appl. Catal. B, 221(2018), p. 380. doi: 10.1016/j.apcatb.2017.09.001
      [19]
      W. Zhao, C. Liang, B.B. Wang, and S.T. Xing, Enhanced photocatalytic and Fenton-like performance of CuOx decorated ZnFe2O4, ACS Appl. Mater. Interfaces, 9(2017), No. 48, p. 41927. doi: 10.1021/acsami.7b14799
      [20]
      Z.K. Yan, J.M. Gao, Y. Li., M. Zhang, and M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite, RSC Adv., 5(2015), No. 112, p. 92778. doi: 10.1039/C5RA17145H
      [21]
      F. Tudorache, P. D. Popa, M. Dobromir, and F. Iacomi, Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating, Mater. Sci. Eng. B, 178(2013), No. 19, p. 1334. doi: 10.1016/j.mseb.2013.03.019
      [22]
      Y.L. Zhao, C.P. Lin, H.J. Bi, Y.G. Liu, and Q.S. Yan, Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation. characterization. photocatalytic activity and photocatalytic mechanism under visible light, Appl. Surf. Sci., 392(2017), p. 701. doi: 10.1016/j.apsusc.2016.09.099
      [23]
      T. Mathew, N.R. Shiju, R. Sreekumar, S. Bollapragada, Gopinath, and S. Chinnakonda, Cu−Co synergism in Cu1-xCoxFe2O4-catalysis and XPS aspects, J. Catal., 210(2002), No. 2, p. 405. doi: 10.1006/jcat.2002.3712
      [24]
      C. Cai, Z.Y. Zhang, L. Jin, S. Ni, Z. Hui, and D.D. Dionysiou, Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water, Appl. Catal. B, 182(2016), p. 456. doi: 10.1016/j.apcatb.2015.09.056
      [25]
      H. Lin, Z. Hui, W. Xue, L. Wang, and W. Jie, Electro-Fenton removal of Orange II in a divided cell: Reaction mechanism, degradation pathway and toxicity evolution, Sep. Purif. Technol., 122(2014), p. 533. doi: 10.1016/j.seppur.2013.12.010
      [26]
      Y.B. Wang, H.Y. Zhao, and G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal. B, 164(2015), p. 396. doi: 10.1016/j.apcatb.2014.09.047
      [27]
      X. Zhong, J.B. Jr, D. Duprez, H. Zhang, and S. Royer, Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction, Appl. Catal. B, 121-122(2012), p. 123. doi: 10.1016/j.apcatb.2012.04.002
      [28]
      X. Han, H.Y. Zhang, T. Chen, M. Zhang, and M. Guo, Facile synthesis of metal-doped magnesium ferrite from saprolite laterite as an effective heterogeneous Fenton-like catalyst, J. Mol. Liq., 272(2018), p. 43. doi: 10.1016/j.molliq.2018.09.045
      [29]
      M. Dindarsafa, A. Khataee, B. Kaymak, B. Vahid, A. Karimi, and A. Rahmani, Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye, Ultrason. Sonochem., 34(2017), p. 389. doi: 10.1016/j.ultsonch.2016.06.016
      [30]
      H. Hassan and B.H. Hameed, Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4, Chem. Eng. J., 171(2011), No. 3, p. 912. doi: 10.1016/j.cej.2011.04.040

    Catalog


    • /

      返回文章
      返回