Cite this article as: |
Navid Mehdipour, Milad Rezaei, and Zeynab Mahidashti, Influence of glycine additive on corrosion and wear performance of electroplated trivalent chromium coating, Int. J. Miner. Metall. Mater., 27(2020), No. 4, pp. 544-554. https://doi.org/10.1007/s12613-020-1975-6 |
The aim of this study is to evaluate the effect of various molar ratios of glycine to chromium salt (Gly : Cr) and different current densities on the corrosion and wear behaviors of Cr(III) electroplated coatings. The morphology and thickness of the coatings were investigated by scanning electron microscopy. The wear properties of the coatings were studied using pin on disk and hardness tests, while corrosion behavior of the coatings was identified using linear polarization, small amplitude cyclic voltammetry, and electrochemical impedance spectroscopy methods. By increasing the glycine concentration, a structure with low crack density was obtained. In all molar ratios, maximum thickness and current efficiency was observed at a current density of 150 mA·cm−2. All the electrochemical methods had a consistent result, and maximum corrosion resistance of approximately 16000 Ω·cm2 was obtained in the case of Gly : Cr = 3:1 and current density of 200 mA·cm−2.
[1] |
K.S. Nam, K.H. Lee, S.C. Kwon, D.Y. Lee, and Y.S. Song, Improved wear and corrosion resistance of chromium(III) plating by oxynitrocarburising and steam oxidation, Mater. Lett., 58(2004), No. 27-28, p. 3540. doi: 10.1016/j.matlet.2004.06.038
|
[2] |
Z. Mahidashti, M. Aliofkhazraei, and N. Lotfi, Review of nickel-based electrodeposited tribo-coatings, Trans. Indian Inst. Met., 71(2018), No. 2, p. 257. doi: 10.1007/s12666-017-1175-x
|
[3] |
G. Saravanan and S. Mohan, Corrosion behavior of Cr electrodeposited from Cr(VI) and Cr(III)-baths using direct (DCD) and pulse electrodeposition (PED) techniques, Corros. Sci., 51(2009), No. 1, p. 197. doi: 10.1016/j.corsci.2008.10.005
|
[4] |
N. Van Phuong, S.C. Kwon, J.Y. Lee, J.H. Lee, and K.H. Lee, The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium, Surf. Coat. Technol., 206(2012), No. 21, p. 4349. doi: 10.1016/j.surfcoat.2012.04.025
|
[5] |
H.A. Ramezani-Varzaneh, S.R. Allahkaram, and M. Isakhani-Zakaria, Effects of phosphorus content on corrosion behavior of trivalent chromium coatings in 3.5wt% NaCl solution, Surf. Coat. Technol., 244(2014), p. 158. doi: 10.1016/j.surfcoat.2014.02.002
|
[6] |
R. Giovanardi and G. Orlando, Chromium electrodeposition from Cr(III) aqueous solutions, Surf. Coat. Technol., 205(2011), No. 15, p. 3947. doi: 10.1016/j.surfcoat.2011.02.027
|
[7] |
N.V. Mandich, Chemistry and theory of chromium deposition: Part 1: chemistry, Plat. Surf. Finish., 84(1997), No. 5, p. 108.
|
[8] |
M. Vidal, M. Ostra, N. Imaz, E. García-Lecina, and C. Ubide, Analysis of SEM digital images to quantify crack network pattern area in chromium electrodeposits, Surf. Coat. Technol., 285(2016), p. 289. doi: 10.1016/j.surfcoat.2015.11.049
|
[9] |
S. Survilienė, O. Nivinskienė, A. Češunienė, and A. Selskis, Effect of Cr(III) solution chemistry on electrodeposition of chromium, J. Appl. Electrochem., 36(2006), No. 6, p. 649. doi: 10.1007/s10800-005-9105-8
|
[10] |
E.S.C. Ferreira, C.M. Pereira, and A.F. Silva, Electrochemical studies of metallic chromium electrodeposition from a Cr(III) bath, J. Electroanal. Chem., 707(2013), p. 52. doi: 10.1016/j.jelechem.2013.08.005
|
[11] |
S.L. Handy, C.F. Oduoza, and T. Pearson, Theoretical aspects of electrodeposition of decorative chromium from trivalent electrolytes and corrosion rate study of different nickel/chromium coatings, Trans. IMF, 84(2006), No. 6, p. 300. doi: 10.1179/174591906X162946
|
[12] |
C.A. Huang, W. Lin, and M.J. Liao, The electrochemical behavior of the bright chromium deposits plated with direct- and pulse-current in 1 M H2SO4, Corros. Sci., 48(2006), No. 2, p. 460. doi: 10.1016/j.corsci.2004.12.002
|
[13] |
C.E. Lu, N.W. Pu, K.H. Hou, C.C. Tseng, and M.D. Ger, The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium, Appl. Surf. Sci., 282(2013), p. 544. doi: 10.1016/j.apsusc.2013.06.008
|
[14] |
Z.X. Zeng, Y.X. Zhang, W.J. Zhao, and J.Y. Zhang, Role of complexing ligands in trivalent chromium electrodeposition, Surf. Coat. Technol., 205(2011), No. 20, p. 4771. doi: 10.1016/j.surfcoat.2011.04.019
|
[15] |
Z.X. Zeng, L.P. Wang, A.M. Liang, and J.Y. Zhang, Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings, Electrochim. Acta, 52(2006), No. 3, p. 1366. doi: 10.1016/j.electacta.2006.07.038
|
[16] |
F.I. Danilov, V.S. Protsenko, T.E. Butyrina, E.A. Vasil’eva, and A.S. Baskevich, Electroplating of chromium coatings from Cr(III)-based electrolytes containing water soluble polymer, Prot. Met., 42(2006), No. 6, p. 560. doi: 10.1134/S0033173206060075
|
[17] |
Md.A. Hoque, M.E. Haque, Md.M. Islam, Md.S. Islam, and C.M. Mustafa, Electroplating of chromium from Cr(III) aqueous solutions on the mild steel: Optimization of bath constituents, Int. J. Innovation Sci. Math., 3(2015), No. 2, p. 124.
|
[18] |
V.S. Protsenko, A.A. Kityk and F.I. Danilov, Kinetics and mechanism of chromium electrodeposition from methanesulfonate solutions of Cr(III) salts, Электронная обработка материалов, 50(2014), No. 5, p. 13.
|
[19] |
A. Baral and R. Engelken, Modeling, optimization, and comparative analysis of trivalent chromium electrodeposition from aqueous glycine and formic acid baths, J. Electrochem. Soc., 152(2005), No. 7, p. C504. doi: 10.1149/1.1933688
|
[20] |
İ.H. Karahan, Effects of pH value of the electrolyte and glycine additive on formation and properties of electrodeposited Zn–Fe coatings, Sci. World J., 2013(2013), art. No 273953.
|
[21] |
R.A.J. Critelli and P.T.A. Sumodjo, Influence of glycine as additive on cobalt electrodeposition, ECS Trans., 50(2013), No. 52, p. 75. doi: 10.1149/05052.0075ecst
|
[22] |
M.A.M. Ibrahim and R.M. Al Radadi, Role of glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath, Int. J. Electrochem. Sci., 10(2015), p. 4946.
|
[23] |
J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24(1953), No. 8, p. 981. doi: 10.1063/1.1721448
|
[24] |
M.G. Fontana, Corrosion Engineering, 3rd, McGraw-Hill Company, New York, 1987, p. 172.
|
[25] |
A.J. Bard, L.R. Faulkner, J. Leddy, and C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980.
|
[26] |
F.A. Lowenheim and J. Davis, Modern electroplating, J. Electrochem. Soc., 121(1974), No. 12, p. 397C.
|
[27] |
C. Bergenstof Nielsen, P. Leisner, and A. Horsewell, On texture formation of chromium electrodeposits, J. Appl. Electrochem., 28(1998), No. 2, p. 141.
|
[28] |
S. Yagi, A. Sengoku, K. Kubota, and E. Matsubara, Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte, Corros. Sci., 57(2012), p. 74. doi: 10.1016/j.corsci.2011.12.032
|
[29] |
D.D. Macdonald, An impedance interpretation of small amplitude cyclic voltammetry I. Theoretical analysis for a resistive-capacitive system, J. Electrochem. Soc., 125(1978), No. 9, p. 1443. doi: 10.1149/1.2131693
|
[30] |
A. Sheibani Aghdam, S.R. Allahkaram, and S. Mahdavi, Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr(III)–Ni (II) bath, Surf. Coat. Technol., 281(2015), p. 144. doi: 10.1016/j.surfcoat.2015.10.006
|
[31] |
G. Saravanan and S. Mohan, Pulsed electrodeposition of microcrystalline chromium from trivalent Cr-DMF bath, J. Appl. Electrochem., 39(2009), No. 8, p. 1393. doi: 10.1007/s10800-009-9816-3
|
[32] |
M. Lebrini, G. Fontaine, L. Gengembre, M. Traisnel, O. Lerasle, and N. Genet, Corrosion protection of galvanized steel and electroplating steel by decanoïc acid in aqueous solution: Electrochemical impedance spectroscopy, XPS and ATR-FTIR, Corros. Sci., 51(2009), No. 6, p. 1201. doi: 10.1016/j.corsci.2009.01.014
|