Cite this article as: |
Min Hu, Zhou Fan, Jian-yi Liu, Kun Zhang, Yang Wang, and Chun-feng Yang, Adsorption of Ag on M-doped graphene: First principle calculations, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 487-494. https://doi.org/10.1007/s12613-020-1989-0 |
Graphene is an ideal reinforcing phase for a high-performance composite filler, which is of great theoretical and practical significance for improving the wettability and reliability of the filler. However, the poor adsorption characteristics between graphene and the silver base filler significantly affect the application of graphene filler in the brazing field. It is a great challenge to improve the adsorption characteristics between a graphene and silver base filler. To solve this issue, the adsorption characteristic between graphene and silver was studied with first principle calculation. The effects of Ga, Mo, and W on the adsorption properties of graphene were explored. There are three possible adsorbed sites, the hollow site (H), the bridge site (B), and the top site (T). Based on this research, the top site is the most preferentially adsorbed site for Ag atoms, and there is a strong interaction between graphene and Ag atoms. Metal element doping enhances local hybridization between C or metal atoms and Ag. Furthermore, compared with other doped structures (Ga and Mo), W atom doping is the most stable adsorption structure and can also improve effective adsorption characteristic performance between graphene and Ag.
[1] |
A. Ntasi, Y. Al Jabbari, W.D. Mueller, G. Eliades, and S. Zinelis, Metallurgical and electrochemical characterization of contemporary silver-based soldering alloys, Angle Orthodontist, 84(2014), No. 3, p. 508. doi: 10.2319/073013-569.1
|
[2] |
F.L. Zou, J.H. Hu, S.Y. Huang, Y. Lei, M.C. Zhou, and Z.K. Xu, Preparation of silver-based solder foils by low-voltage magnetic pulsed compaction, Emerg. Mater. Res., 5(2016), No. 2, p. 221. doi: 10.1680/jemmr.16.00008
|
[3] |
A. Khorram and M. Ghoreishi, Comparative study on laser brazing and furnace brazing of Inconel 718 alloys with silver based filler metal, Opt. Laser Technol., 68(2015), p. 165. doi: 10.1016/j.optlastec.2014.11.026
|
[4] |
Y. Chen, D. Yun, F. Sui, W. Long, G. Zhang, and S. Liu, Influence of sulphur on the microstructure and properties of Ag−Cu−Zn brazing filler metal, Mater. Sci. Technol., 29(2013), No. 10, p. 1267. doi: 10.1179/1743284713Y.0000000284
|
[5] |
F.F. Sui, W.M. Long, S.X. Liu, G.X. Zhang, L. Bao, H. Li, and Y. Chen, Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag−Cu−Zn brazing filler metal, Mater. Des., 46(2013), p. 605. doi: 10.1016/j.matdes.2012.11.021
|
[6] |
K. Demianová, M. Behúlová, O. Milan, M. Turňa, and M. Sahul, Brazing of aluminum tubes using induction heating, Adv. Mater. Res., 463-464(2012), p. 1405. doi: 10.4028/www.scientific.net/AMR.463-464.1405
|
[7] |
T.O. Wehling, M.I. Katsnelson, and A.I. Lichtenstein, Adsorbates on graphene: impurity states and electron scattering, Chem. Phys. Lett., 476(2009), No. 4-6, p. 125. doi: 10.1016/j.cplett.2009.06.005
|
[8] |
A.Z. Alzahrani, First-principles study on the structural and electronic properties of graphene upon benzene and naphthalene adsorption, Appl. Surf. Sci., 257(2010), No. 3, p. 807. doi: 10.1016/j.apsusc.2010.07.069
|
[9] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438(2005), p. 197. doi: 10.1038/nature04233
|
[10] |
X.R. Song, H.J. Li, and X.R. Zeng, Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiCuZrNi brazing alloy, J. Alloys Compd., 664(2016), p. 175. doi: 10.1016/j.jallcom.2015.12.242
|
[11] |
W. Xin, W.Y. Xing, Z. Ping, S. Lei, H.Y. Yang, and H. Yuan, Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites, Compos. Sci. Technol., 72(2012), No. 6, p. 737. doi: 10.1016/j.compscitech.2012.01.027
|
[12] |
J.L. Qi, Z.Y. Wang, J.H. Lin, T.Q. Zhang, A.T. Zhang, J. Cao, L.X. Zhang, and J.C. Feng, Graphene-enhanced Cu composite interlayer for contact reaction brazing aluminum alloy 6061, Vacuum, 136(2017), p. 142. doi: 10.1016/j.vacuum.2016.11.032
|
[13] |
K. Chang and W.X. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries, ACS Nano, 5(2011), No. 6, p. 4720. doi: 10.1021/nn200659w
|
[14] |
V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications, Synth. Met., 220(2016), p. 524. doi: 10.1016/j.synthmet.2016.07.011
|
[15] |
Z. Cai, H.Z. Xiong, Z.N. Zhu, H.B. Huang, L. Li, Y.N. Huang, and X.H. Yu, Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications, Synth. Met., 227(2017), p. 100. doi: 10.1016/j.synthmet.2017.03.012
|
[16] |
F. Chen, N. Gupta, R.K. Behera, and P.K. Rohatgi, Graphene-reinforced aluminum matrix composites: a review of synthesis methods and properties, JOM, 70(2018), No. 6, p. 837. doi: 10.1007/s11837-018-2810-7
|
[17] |
S.R. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and surface free energy of graphene films, Langmuir, 25(2009), No. 18, p. 11078. doi: 10.1021/la901402f
|
[18] |
J. Ma, A. Michaelides, D. Alfe, L. Schimka, G. Kresse, and E.G. Wang, Adsorption and diffusion of water on graphene from first principles, Phys. Rev. B, 84(2011), No. 3, art. No. 033402.
|
[19] |
J. Kysilka, M. Rubeš, L. Grajciar, P. Nachtigall, and O. Bludský, Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes, J. Phys. Chem. A, 115(2011), No. 41, p. 11387. doi: 10.1021/jp205330n
|
[20] |
J.H. Cao, Y. Liu, and X.S. Ning, Influence of AlN (0001) surface reconstructions on the wettability of an Al/AlN system: A first-principle study, Materials, 11(2018), No. 5, p. 775. doi: 10.3390/ma11050775
|
[21] |
P. Bloński and M. Otyepka, First-principles study of the mechanism of wettability transition of defective graphene, Nanotechnology, 28(2017), No. 6, art. No. 064003. doi: 10.1088/1361-6528/aa53c5
|
[22] |
A. Ashraf, Y.B. Wu, M.C. Wang, K. Yong, T. Sun, Y.H. Jing, R.T. Haasch, N.R. Aluru, and S. Nam, Doping-induced tunable wettability and adhesion of graphene, Nano Lett., 16(2016), No. 7, p. 4708. doi: 10.1021/acs.nanolett.6b02228
|
[23] |
D.Z. Fan, G.L. Liu, and S. Zhou, Effects of vacancy and deformation on an Al atom adsorbed on graphene, Chin. J. Phys., 56(2018), No. 2, p. 689. doi: 10.1016/j.cjph.2017.11.028
|
[24] |
Y. Liu, L.B. An, and L. Gong, First-principles study of Cu adsorption on vacancy-defected/Au-doped graphene, Mod. Phys. Lett. B, 32(2018), No. 11, p. 1850139. doi: 10.1142/S0217984918501397
|
[25] |
Y.L. He, D.X. Liu, Y. Qu, and Z. Yao, Adsorption of hydrogen molecule on the intrinsic and Al-doped graphene: A first principle study, Adv. Mater. Res., 507(2012), p. 61. doi: 10.4028/www.scientific.net/AMR.507.61
|
[26] |
X.Y. Xu, J. Li, H.Y. Xu, X.F. Xu, and C.Y. Zhao, DFT investigation of Ni-doped graphene: Catalytic ability to CO oxidation, New J. Chem., 40(2016), No. 11, p. 9361. doi: 10.1039/C6NJ00924G
|
[27] |
C.L. M, S.B. Xue, and B. Wang, Study on novel Ag−Cu−Zn−Sn brazing filler metal bearing Ga, J. Alloys Compd., 688(2016), p. 854. doi: 10.1016/j.jallcom.2016.07.255
|
[28] |
J.Y. Liu, T.P. Wang, C.F. Liu, and T.P. Zhang, Microstructure and mechanical properties of porous Si3N4/Invar joints brazed with Ag−Cu−Ti+Mo/Cu/Ag−Cu multi-layered composite filler, Ceram. Int., 43(2017), No. 15, p. 11668. doi: 10.1016/j.ceramint.2017.05.354
|
[29] |
J. Zhang, J.Y. Liu, and T.P. Wang, Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag−Cu−Ti/Cu/Ag−Cu multi-layered filler, J. Mater. Sci. Technol., 34(2018), No. 4, p. 713. doi: 10.1016/j.jmst.2017.07.001
|
[30] |
Z.W. Yang, J.M. Lin, Y. Wang, and D.P. Wang, Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag−Cu−Ti plus W composite filler, Vacuum, 143(2017), p. 294. doi: 10.1016/j.vacuum.2017.06.020
|
[31] |
K.S. Novoselov, D. Jiang, T. Booth, V.V. Khotkevich, S.M. Morozov, and A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. US, 102(2005), No. 30, p. 10451. doi: 10.1073/pnas.0502848102
|
[32] |
S.V. Morozov, K.S. Novoselov, F. Schedin, D. Jiang, A.A. Firsov, and A.K. Geim, Two dimensional electron and hole gases at the surface of graphite, Phys. Rev. B, 72(2005), No. 20, art. No. 201401. doi: 10.1103/PhysRevB.72.201401
|
[33] |
J.M. Carlsson and M. Scheffler, Structural, electronic, and chemical properties of nanoporous carbon, Phys. Rev. Lett., 96(2006), No. 4, p. 46806. doi: 10.1103/PhysRevLett.96.046806
|
[34] |
V. Milman, K. Refson, S.J. Clark, C.J. Pickard, J.R. Yates, S.P. Gao, P.J. Hasnip, M.I.J. Probert, A. Perlov, and M.D. Segall, Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation, J. Mol. Struct. THEOCHEM, 954(2010), No. 1-3, p. 22. doi: 10.1016/j.theochem.2009.12.040
|
[35] |
A.D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys., 98(1993), No. 2, p. 1372. doi: 10.1063/1.464304
|
[36] |
R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55(1985), No. 22, p. 2471. doi: 10.1103/PhysRevLett.55.2471
|
[37] |
L.H. Yuan, D.B. Wang, J.J. Gong, C.R. Zhang, M.L. Zhang, X.J. Wu, and L. Kang, First-principles study of V-decorated porous graphene for hydrogen storage, Chem. Phys. Lett., 726(2019), p. 57. doi: 10.1016/j.cplett.2019.04.026
|
[38] |
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46(1992), No. 11, p. 6671. doi: 10.1103/PhysRevB.46.6671
|
[39] |
J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54(1996), No. 23, p. 16533. doi: 10.1103/PhysRevB.54.16533
|
[40] |
J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
|
[41] |
Z.Q. Zheng and H.L. Wang, Different elements doped graphene sensor for CO2 greenhouse gases detection: the DFT study, Chem. Phys. Lett., 721(2019), p. 33. doi: 10.1016/j.cplett.2019.02.024
|
[42] |
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41(1990), No. 11, p. 7892. doi: 10.1103/PhysRevB.41.7892
|
[43] |
R. Muhammad, Y. Shuai, and H.P. Tan, First-principles study on hydrogen adsorption on nitrogen doped graphene, Physica E, 88(2017), p. 115. doi: 10.1016/j.physe.2016.12.012
|
[44] |
J. Granatier, P. Lazar, R. Prucek, K. Šafářová, R. Zbořil, M. Otyepka, and P. Hobza, Interaction of graphene and arenes with noble metals, J. Phys. Chem. C, 116(2012), No. 26, p. 14151. doi: 10.1021/jp3030733
|
[45] |
M. Amft, S. Lebègue, O. Eriksson, and N.V. Skorodumova, Adsorption of Cu. Ag, and Au atoms on graphene including van der Waals interactions, J. Phys. Condens. Matter, 23(2011), No. 39, p. 395001. doi: 10.1088/0953-8984/23/39/395001
|
[46] |
T.L. Pham, P.V. Dung, A. Sugiyama, N.D. Duc, T. Shimoda, A. Fujiwara, and D.H. Chi, First principles study of the physisorption of hydrogen molecule on graphene and carbon nanotube surfaces adhered by Pt atom, Comput. Mater. Sci., 49(2010), No. 1, p. S15. doi: 10.1016/j.commatsci.2010.02.041
|
[47] |
Y. Pan and SL. Wang, Insight into the oxidation mechanism of MoSi2: Ab- initio calculations, Ceram. Int., 44(2018), No. 16, p. 19583. doi: 10.1016/j.ceramint.2018.07.204
|
[48] |
W.X. Zhang, C. He, T. Li, S.B. Gong, L. Zhao, and J.Y. Tao, First-principles study on the electronic and magnetic properties of armchair graphane/graphene heterostructure nanoribbons, Solid State Commun., 211(2015), p. 23. doi: 10.1016/j.ssc.2015.03.014
|
[49] |
Z. Jiang, Y. Zhang, H.L. Stormer, and P. Kim, Quantum hall states near the charge-neutral dirac point in graphene, Phys. Rev. Lett., 99(2007), art. No. 106802. doi: 10.1103/PhysRevLett.99.106802
|
[50] |
W.J. Yu, L. Liao, S.H. Chae, Y. H. Lee, and X. Duan, Toward tunable band gap and tunable Dirac Point in bilayer graphene with molecular doping, Nano Lett., 11(2011), No. 11, p. 4759. doi: 10.1021/nl2025739
|
[51] |
M. Rafique, Y. Shuai, H.P. Tan, and H Muhammad, Theoretical perspective on structural, electronic and magnetic properties of 3d metal tetraoxide clusters embedded into single and di-vacancy graphene, Appl. Surf. Sci., 408(2017), p. 21. doi: 10.1016/j.apsusc.2017.02.239
|