留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 11
Nov.  2020

图(11)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  4224
  • HTML全文浏览量:  977
  • PDF下载量:  186
  • 被引次数: 0
Subhnit K. Roy, Deepak Nayak, Nilima Dash, Nikhil Dhawan,  and Swagat S. Rath, Microwave-assisted reduction roasting–magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1449-1461. https://doi.org/10.1007/s12613-020-1992-5
Cite this article as:
Subhnit K. Roy, Deepak Nayak, Nilima Dash, Nikhil Dhawan,  and Swagat S. Rath, Microwave-assisted reduction roasting–magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, pp. 1449-1461. https://doi.org/10.1007/s12613-020-1992-5
引用本文 PDF XML SpringerLink
研究论文

微波辅助还原焙烧—磁选两种矿物学性质不同的低品位铁矿石

  • Research Article

    Microwave-assisted reduction roasting–magnetic separation studies of two mineralogically different low-grade iron ores

    + Author Affiliations
    • The microwave-assisted reduction behaviours of two low-grade iron ores having a similar Fe content of 49wt% but distinctly different mineralogical and liberation characteristics were studied. Their performances in terms of the iron grade and recovery as obtained from statistically designed microwave (MW) roasting followed by low-intensity magnetic separation (LIMS) experiments were compared. At respective optimum conditions, the titano-magnetite ore (O1) could yield an iron concentrate of 62.57% Fe grade and 60.01% Fe recovery, while the goethitic ore (O2) could be upgraded to a concentrate of 64.4% Fe grade and 33.3% Fe recovery. Compared with the goethitic ore, the titano-magnetite ore responded better to MW heating. The characterization studies of the feed and roasted products obtained at different power and time conditions using X-ray diffraction, optical microscopy, vibrating-sample magnetometry, and electron-probe microanalysis explain the sequential reduction in the iron oxide phases. Finally, taking advantage of the MW absorbing character of the titano-magnetite ore, a blend of the same with the goethite-rich ore at a weight ratio of 60 : 40 (O2 : O1) was subjected to MW roasting that resulted in a concentrate of 61.57% Fe grade with a Fe recovery of 64.47%.

    • loading
    • [1]
      Y.S. Sun, Y.X. Han, P. Gao, Z.L. Wang, and D.Z. Ren, Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., 20(2013), No. 5, p. 411. doi: 10.1007/s12613-013-0744-1
      [2]
      G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron–iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000. doi: 10.1007/s12613-018-1650-3
      [3]
      S.S. Rath, D.S. Rao, S.K. Tripathy, and S.K. Biswal, Characterization vis-á-vis utilization of blast furnace flue dust in the roast reduction of banded iron ore, Process Saf. Environ. Prot., 117(2018), p. 232. doi: 10.1016/j.psep.2018.05.007
      [4]
      N. Ray, D. Nayak, N. Dash, and S.S. Rath, Utilization of low-grade banded hematite jasper ores: Recovery of iron values and production of ferrosilicon, Clean Technol. Environ. Policy, 20(2018), No. 8, p. 1761. doi: 10.1007/s10098-018-1566-7
      [5]
      Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938. doi: 10.1007/s12613-019-1810-0
      [6]
      S.M.J. Koleini and K. Barani, Microwave heating applications in mineral processing, [in] W.B. Cao, ed., The Development and Application of Microwave Heating, InTechOpen, London, 2012.
      [7]
      K. Onol and M.N. Saridede, Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 228. doi: 10.1007/s12613-013-0717-4
      [8]
      Y.Z. Yuan, Y.M. Zhang, T. Liu, and T.J. Chen, Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 476. doi: 10.1007/s12613-015-1096-9
      [9]
      K.E. Haque, Microwave energy for mineral treatment processes—A brief review, Int. J. Miner. Process., 57(1999), No. 1, p. 1. doi: 10.1016/S0301-7516(99)00009-5
      [10]
      C.A. Pickles, Microwave heating behaviour of nickeliferous limonitic laterite ores, Miner. Eng., 17(2004), No. 6, p. 775. doi: 10.1016/j.mineng.2004.01.007
      [11]
      Z.Q. Zhu and J. Zhou, Rapid growth of ZnO hexagonal tubes by direct microwave heating, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 80. doi: 10.1007/s12613-010-0114-1
      [12]
      C.A. Pickles, Microwaves in extractive metallurgy: Part 1—Review of fundamentals, Miner. Eng., 22(2009), No. 13, p. 1102. doi: 10.1016/j.mineng.2009.02.015
      [13]
      F.F. Wu, Z.F. Cao, S. Wang, and H. Zhong, Novel and green metallurgical technique of comprehensive utilization of refractory limonite ores, J. Cleaner Prod., 171(2018), p. 831. doi: 10.1016/j.jclepro.2017.09.198
      [14]
      V. Rayapudi, S. Agrawal, and N. Dhawan, Optimization of microwave carbothermal reduction for processing of banded hematite jasper ore, Miner. Eng., 138(2019), p. 204. doi: 10.1016/j.mineng.2019.05.004
      [15]
      S.S. Rath, N. Dhawan, D.S. Rao, B. Das, and B.K. Mishra, Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting, Powder Technol., 301(2016), p. 1016. doi: 10.1016/j.powtec.2016.07.044
      [16]
      P. Kumar, B.K. Sahoo, S. De, D.D. Kar, S. Chakraborty, and B.C. Meikap, Iron ore grindability improvement by microwave pre-treatment, J. Ind. Eng. Chem., 16(2010), No. 5, p. 805. doi: 10.1016/j.jiec.2010.05.008
      [17]
      J.P. Wang, T. Jiang, Y.J. Liu, and X.X. Xue, Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 160. doi: 10.1007/s12613-019-1720-1
      [18]
      J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo, and J.M. Bermúdez, Microwave heating process involving carbon materials, Fuel Process. Technol., 91(2010), No. 1, p. 1. doi: 10.1016/j.fuproc.2009.08.021
      [19]
      P.C. Beuria, S.K. Biswal, B.K. Mishra, and G.G. Roy, Study on kinetics of thermal decomposition of low LOI goethetic hematite iron ore, Int. J. Min. Sci. Technol., 27(2017), No. 6, p. 1031. doi: 10.1016/j.ijmst.2017.06.018
      [20]
      S.K. Das, B. Das, R. Sakthivel, and B.K. Mishra, Mineralogy, microstructure, and chemical composition of goethites in some iron ore deposits of orissa, India, Miner. Process. Extr. Metall. Rev., 31(2010), No. 2, p. 97. doi: 10.1080/08827500903404948
      [21]
      D. Nayak, N. Dash, N. Ray, and S.S. Rath, Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines, Powder Technol., 353(2019), p. 450. doi: 10.1016/j.powtec.2019.05.053
      [22]
      J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349. doi: 10.1080/08827508.2019.1634565
      [23]
      B.C. Jena, W. Dresler, and I.G. Reilly, Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada, Miner. Eng., 8(1995), No. 1-2, p. 159. doi: 10.1016/0892-6875(94)00110-X
      [24]
      S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 71(2019), No. 3, p. 1144. doi: 10.1007/s11837-018-2863-7
      [25]
      L.S. Zhao, L.N. Wang, D.S. Chen, H.X. Zhao, Y.H. Liu, and T. Qi, Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation, Trans. Nonferrous Met. Soc. China, 25(2015), No. 4, p. 1325. doi: 10.1016/S1003-6326(15)63731-1
      [26]
      T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Reduction behavior of panzhihua titanomagnetite concentrates with coal, Metall. Mater. Trans. B, 44(2013), No. 2, p. 252. doi: 10.1007/s11663-012-9783-7
      [27]
      T. Jiang, J. Xu, S.F. Guan, and X.X. Xue, Study on coal-based direct reduction of high-chromium vanadium–titanium magnetite, J. Northeast. Univ., 36(2015), No. 1, p. 77.
      [28]
      M.S. Jena, H.K. Tripathy, J.K. Mohanty, J.N. Mohanty, S.K. Das, and P.S.R. Reddy, Roasting followed by magnetic separation: A process for beneficiation of titano-magnetite ore, Sep. Sci. Technol., 50(2015), No. 8, p. 1221. doi: 10.1080/01496395.2014.965834
      [29]
      K. Ishizaki, K. Nagata, and T. Hayashi, Production of pig iron from magnetite ore–coal composite pellets by microwave heating, ISIJ Int., 46(2006), No. 10, p. 1403. doi: 10.2355/isijinternational.46.1403
      [30]
      P. Ramdohr, The Ore Minerals and Their Intergrowths, Elsevier, Netherlands, 1969.
      [31]
      S.H. Guo, W. Li, J.H. Peng, H. Niu, M.Y. Huang, L.B. Zhang, S.M. Zhang, and M. Huang, Microwave-absorbing characteristics of mixtures of different carbonaceous reducing agents and oxidized ilmenite, Int. J. Miner. Process., 93(2009), No. 3-4, p. 289. doi: 10.1016/j.minpro.2009.09.001
      [32]
      C.A. Pickles, J. Mouris, and R.M. Hutcheon, High-temperature dielectric properties of goethite from 400 to 3000 MHz, J. Mater. Res., 20(2005), No. 1, p. 18. doi: 10.1557/JMR.2005.0012
      [33]
      K. Kawahira, Y. Saito, N. Yoshikawa, H. Todoroki, and S. Taniguchi, Penetration depth of microwave into the mixture of goethite with graphite estimated by permittivity and conductivity, Metall. Mater. Trans. B, 45(2014), No. 1, p. 212. doi: 10.1007/s11663-013-9989-3
      [34]
      Y. Saito, K. Kawahira, N. Yoshikawa, H. Todoroki, and S. Taniguchi, Dehydration behavior of goethite blended with graphite by microwave heating, ISIJ Int., 51(2011), No. 6, p. 878. doi: 10.2355/isijinternational.51.878

    Catalog


    • /

      返回文章
      返回