留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 2
Feb.  2021

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2995
  • HTML全文浏览量:  451
  • PDF下载量:  50
  • 被引次数: 0
Wei Long, Song Zhang, Yi-long Liang,  and Mei-gui Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 296-304. https://doi.org/10.1007/s12613-020-1996-1
Cite this article as:
Wei Long, Song Zhang, Yi-long Liang,  and Mei-gui Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 296-304. https://doi.org/10.1007/s12613-020-1996-1
引用本文 PDF XML SpringerLink
研究论文

多级热处理对TC21钛合金组织和力学性能的影响

  • Research Article

    Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy

    + Author Affiliations
    • Duplex-structured TC21 alloy samples were first solution-treated at a higher temperature in the α + β region (940°C) with furnace cooling (FC), air cooling (AC), and water cooling (WC), followed by a second-stage solution treatment at a lower temperature in the α + β region (900°C), and then finally aged at 590°C. The effects of the morphology and quantity of α phases on the structure and properties of the TC21 alloy after the different heat treatments were analyzed. The in-situ tensile deformation process and crack propagation behavior were observed using scanning electron microscopy (SEM). The quantity of equiaxed α phases as well as the thickness of lamellar α phases reduced, the tensile strength increased firstly and then decreased, the elongation decreased with the increasing cooling rate after the first-stage solution treatment. The amount and size of lamellar α phases increased after the second-stage solution treatment because of sufficient diffusion of the alloying elements, thereby leading to increased tensile strength. The amount of dispersed α phases increased after the third-stage aging treatment owing to the increase in the nucleation rate, resulting in a noteworthy strengthening effect. After the third-stage aging treatment, the first-stage FC sample exhibited better mechanical properties because it contained more equiaxed α and βtrans phases than the first-stage AC and WC samples.

    • loading
    • [1]
      M. Ustundag and R. Varol, Comparison of a commercial powder and a powder produced from Ti−6Al−4V chips and their effects on compacts sintered by the sinter-HIP method, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 878. doi: 10.1007/s12613-019-1787-8
      [2]
      N.E. Karkalos, N.I. Galanis, and A.P. Markopoulos, Surface roughness prediction for the milling of Ti−6Al−4V ELI alloy with the use of statistical and soft computing techniques, Measurement, 90(2016), p. 25. doi: 10.1016/j.measurement.2016.04.039
      [3]
      X. Wen, M.P. Wang, C.W. Huang, Y.B. Tan, M. Lei, Y.L. Liang, and X. Cai, Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy, Mater. Des., 180(2019), art. No. 107898. doi: 10.1016/j.matdes.2019.107898
      [4]
      S. Zhang, Y.L. Liang, Q.F. Xia, and M.G. Ou, Study on tensile deformation behavior of TC21 titanium alloy, J. Mater. Eng. Perform., 28(2019), No. 3, p. 1581. doi: 10.1007/s11665-019-03901-x
      [5]
      Z.M. Hou, Y.Q. Zhao, W.D. Zeng, X.N. Mao, W.G. Lei, and P.S. Zhang, Effect of heat treatment on the microstructure development of TC21 alloy, Rare Met. Mater. Eng., 46(2017), No. 8, p. 2087. doi: 10.1016/S1875-5372(17)30184-4
      [6]
      J. Sarma, R. Kumar, A.K. Sahoo, and A. Panda, Enhancement of material properties of titanium alloys through heat treatment process: A brief review, Mater. Today:Proc., 23(2020), p. 561. doi: 10.1016/j.matpr.2019.05.409
      [7]
      W.Y. Liu, Y.H. Lin, Y.H. Chen, T.H. Shi, and A. Singh, Effect of different heat treatments on microstructure and mechanical properties of Ti6Al4V titanium alloy, Rare Met. Mater. Eng., 46(2017), No. 3, p. 634. doi: 10.1016/S1875-5372(17)30109-1
      [8]
      Z.F. Shi, H.Z. Guo, J.Y. Han, and Z.K. Yao, Microstructure and mechanical properties of TC21 titanium alloy after heat treatment, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 2882. doi: 10.1016/S1003-6326(13)62810-1
      [9]
      J.H. Shi, Study on Heat-Treatment and Cold-Forging Process of TC16 Titanium Alloy [Dissertation], Dalian University of Technology, Dalian, 2012, p. 61.
      [10]
      G.X. Wang, Effect of heat treatment on the microstructure and properties of TC21 titanium alloy, J. Henan Sci. Technol., 22(2014), No. 11, p. 56.
      [11]
      C. Wu and M. Zhan, Microstructural evolution, mechanical properties and fracture toughness of near β titanium alloy during different solution plus aging heat treatments, J. Alloys Compd., 805(2019), p. 1144. doi: 10.1016/j.jallcom.2019.07.134
      [12]
      Z.M. Hou, X.N. Mao, Y.Q. Zhao, P.S. Zhang, W.G. Lei, and L.L. Yu, Effect of β solution treatment on morphology and mechanical properties of TC21 alloy, Chin. J. Nonferrous Met., 23(2013), Suppl. 1, p. s480.
      [13]
      X.D. Zhang, J.M.K. Wiezorek, W.A. Baeslack, D.J. Evans, and H.L. Fraser, Precipitation of ordered α2 phase in Ti−6−22−22 alloy, Acta Mater., 46(1998), No. 13, p. 4485. doi: 10.1016/S1359-6454(98)00158-X
      [14]
      M.G. Ou, Q.F. Xia, H.C. Song, and Y.L. Liang, Effect of different cooling rates on microstructure and mechanical properties of TC4 alloy, Rare Met. Mater. Eng., 48(2019), No. 2, p. 638.
      [15]
      Z.M. Hou, X.N. Mao, W.G. Lei, Y.F. Lu, P.S. Zhang, and D. Han, Effect of solution treatment on morphology of near β forged TC21 alloy, Chin. J. Nonferrous Met., 20(2010), Suppl. 1, p. s581.
      [16]
      Z. Li, S.P. Kang, H.H. Yu, H. Jiang, D.T. Qiu, T. Yu, and Z.H. Li, The microstructural evolution of TC4 alloy during cooling from the solution temperature, J. Shenyang Aerosp. Univ., 31(2014), No. 5, p. 44.
      [17]
      W. Dang, X.Y. Xue, H.C. Kou, H. Chang, J.S. Li, F.S. Zhang, and L. Zhou, Phase and microstructure of TC21 titanium alloy during slow cooling, J. Aeronaut. Mater., 30(2010), No. 3, p. 19.
      [18]
      P. Guo, Y.Q. Zhao, W.D. Zeng, Q. Hong, X.N. Mao, W.J. Jia, and Y.Q. Zhao, Effect of heat treatment in α+β zone on fracture toughness of TC4-DT titanium alloy, Rare Met. Mater. Eng., 47(2018), No. 4, p. 1221.
      [19]
      P. Castany, F. Diologent, A. Rossoll, J.-F. Despois, C. Bezençon, and A. Mortensen, Influence of quench rate and microstructure on bendability of AA6016 aluminum alloys, Mater. Sci. Eng. A, 559(2013), p. 558. doi: 10.1016/j.msea.2012.08.141
      [20]
      A.G. Illarionov, A.A. Popov, M.O. Leder, F.V. Vodolazskii, and A.V. Zhloba, Formation of structure, phase composition and properties in a two-phase titanium alloy upon variation of the temperature and rate parameters of heat treatment, Met. Sci. Heat Treat, 56(2015), No. 9-10, p. 499. doi: 10.1007/s11041-015-9789-2
      [21]
      G.Y. Tan, Y.F. Wu, G. Yang, Y.H. Sun, and Y.C. Yue, Effect of solution aging treatment on impact property of TC4 titanium alloy, Foundry Technol., 37(2016), No. 5, p. 902.
      [22]
      N. Maury, B. Denand, M. Dehmas, C. Archambeau-Mirguet, J. Delfosse, and E. Aeby-Gautier, Influence of the ageing conditions and the initial microstructure on the precipitation of α phase in Ti-17 alloy, J. Alloys Compd., 763(2018), p. 446. doi: 10.1016/j.jallcom.2018.04.302
      [23]
      P. Ge, W. Zhou, Y.Q. Zhao, and L. Zhou, Aging characteristics of new metastable beta titanium alloy, Trans. Nonferrous Met. Soc. China, 17(2007), p. s88.
      [24]
      X.X. Gao, W.D. Zeng, S.F. Zhang, and Q.J. Wang, A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy, Acta Mater., 122(2017), p. 298. doi: 10.1016/j.actamat.2016.10.012
      [25]
      J.W. Xu, W.D. Zeng, Z.Q. Jia, X. Sun, and J.H. Zhou, Microstructure coarsening behavior of Ti-17 alloy with equiaxed alpha during heat treatment, J. Alloys Compd., 618(2015), p. 343. doi: 10.1016/j.jallcom.2014.08.223
      [26]
      C.W. Huang, Y.Q. Zhao, S.W. Xin, C.S. Tan, W. Zhou, Q. Li, and W.D. Zeng, High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with lamellar microstructure, Mater. Sci. Eng. A, 682(2017), p. 107. doi: 10.1016/j.msea.2016.11.014
      [27]
      H. Shao, Y.Q. Zhao, P. Ge, and W.D. Zeng, Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure, Mater. Sci. Eng. A, 586(2013), p. 215. doi: 10.1016/j.msea.2013.08.012
      [28]
      Y. Xiong and G.Q. Xiao, Effect of heat treatment on microstructure and mechanical properties of TC21 titanium alloy, Foundry Technol., 36(2015), No. 3, p. 638.
      [29]
      C.S. Tan, Q.Y. Sun, L. Xiao, Y.Q. Zhao, and J. Sun, Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments, Mater. Sci. Eng. A, 725(2018), p. 33. doi: 10.1016/j.msea.2018.03.123
      [30]
      D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844. doi: 10.1016/j.actamat.2012.10.043
      [31]
      M.F. Savage, J. Tatalovich, M. Zupan, K.J. Hemker, and M.J. Mills, Deformation mechanisms and microtensile behavior of single colony Ti−6242Si, Mater. Sci. Eng. A, 319-321(2001), p. 398. doi: 10.1016/S0921-5093(01)01024-3
      [32]
      S. Suri, G.B. Viswanathan, T. Neeraj, D.-H. Hou, and M.J. Mills, Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy, Acta Mater., 47(1999), No. 3, p. 1019. doi: 10.1016/S1359-6454(98)00364-4
      [33]
      C. Li, J. Chen, W. Li, Y.J. Ren, J.J. He, and Z.X. Song, Effect of heat treatment variations on the microstructure evolution and mechanical properties in a β metastable Ti alloy, J. Alloys Compd., 684(2016), p. 466. doi: 10.1016/j.jallcom.2016.05.225
      [34]
      A.J. Liu, L. Wang, and H.X. Dai, Effect of heat treatment on the microstructure and dynamic behavior of Ti−10V−2Fe−3Al alloy, Mater. Sci. Forum, 910(2018), p. 155. doi: 10.4028/www.scientific.net/MSF.910.155
      [35]
      J.Y. Liu, X. Pu, C. Sun, and W.S. Zha, Effects of hydrides on fracture behavior of N18 zirconium alloy during in situ tension, Rare Met. Mater. Eng., 46(2017), No. 3, p. 711.
      [36]
      L.Y. Zeng, Q. Hong, Y.Q. Zhao, and Y.L. Qi, Thermal stability of one type of near α titanium alloy Ti-600, Mater. Res. Innovations, 18(2014), Suppl. 4, p. 207.
      [37]
      H.J. Liu, R. Cao, H. He, J. Zhang, and J.H. Chen, Notch sensitivity of K418 alloy, Chin. J. Rare Met., 34(2010), No. 5, p. 699.
      [38]
      T. Wang, H.Z. Guo, Y.W. Wang, X.N. Peng, Y. Zhao, and Z.K. Yao, The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2370. doi: 10.1016/j.msea.2010.12.044
      [39]
      S. Guo, Q.K. Meng, G.Y. Liao, L. Hu, and X.Q. Zhao, Microstructural evolution and mechanical behavior of metastable β-type Ti−25Nb−2Mo−4Sn alloy with high strength and low modulus, Prog. Nat. Sci:Mater. Int., 23(2013), No. 2, p. 174. doi: 10.1016/j.pnsc.2013.03.008
      [40]
      H.J. Liu and X.L. Feng, Study of diffusion bonding of fine grain TC21 titanium alloy, Rare Met. Mater. Eng., 38(2009), No. 9, p. 1509. doi: 10.1016/S1875-5372(10)60047-1
      [41]
      G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A, 243(1998), No. 1-2, p. 32. doi: 10.1016/S0921-5093(97)00778-8

    Catalog


    • /

      返回文章
      返回