留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 3
Mar.  2021

图(13)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2713
  • HTML全文浏览量:  430
  • PDF下载量:  58
  • 被引次数: 0
Ming Gao, Jin-tao Gao, Yan-ling Zhang,  and Shu-feng Yang, Simulation on scrap melting behavior and carbon diffusion under natural convection, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 380-389. https://doi.org/10.1007/s12613-020-1997-0
Cite this article as:
Ming Gao, Jin-tao Gao, Yan-ling Zhang,  and Shu-feng Yang, Simulation on scrap melting behavior and carbon diffusion under natural convection, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 380-389. https://doi.org/10.1007/s12613-020-1997-0
引用本文 PDF XML SpringerLink
研究论文

自然对流下废料熔化行为和碳扩散的模拟

  • Research Article

    Simulation on scrap melting behavior and carbon diffusion under natural convection

    + Author Affiliations
    • A 3D model applying temperature- and carbon concentration- dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection. Simulated results agreed reasonably well with experimental ones. Scrap melting was subdivided into four stages: formation of a solidified layer, rapid melting of the solidified layer, carburization, and carburization + normal melting. The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K. The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130 μm at 5 s to 140 μm at 60 s. The maximum velocity caused by natural convection decreased from 0.029 m·s−1 at 5 s to 0.009 m·s−1 at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.

    • loading
    • [1]
      F. Oeters and R.M. Ni, Metallurgy of Steelmaking, The Metallurgical Industry Press, Beijing, 1997, p. 479.
      [2]
      R.D. Pehlke, P.D. Goodell, and R.W. Dunlap, Kinetics of steel dissolution in molten pig iron, Trans. Metall. Soc. ALME, 233(1965), p. 1420.
      [3]
      R.I.L. Guthrie and P. Stubbs, Kinetics of scrap melting in baths of molten pig iron, Can. Metall. Q., 12(1973), No. 4, p. 465. doi: 10.1179/cmq.1973.12.4.465
      [4]
      K. Mori and H. Nomura, Study on the rate of scrap melting in the steelmaking process, Tetsu-to-Hagané, 55(1969), No. 5, p. 347.
      [5]
      E.M. Gol'dfarb and B.I. Sherstov, Heat and mass transfer when melting scrap in an oxygen converter, J. Eng. Phys., 18(1970), No. 3, p. 342. doi: 10.1007/BF00828292
      [6]
      D. Weisz-Patrault, Coupled heat conduction and multiphase change problem accounting for thermal contact resistance, Int. J. Heat Mass Transfer, 104(2017), p. 595. doi: 10.1016/j.ijheatmasstransfer.2016.08.091
      [7]
      A.K. Shukla, B. Deo, and D.G.C. Robertson, Scrap dissolution in molten iron containing carbon for the case of coupled heat and mass transfer control, Metall. Mater. Trans. B, 44(2013), No. 6, p. 1407. doi: 10.1007/s11663-013-9905-x
      [8]
      Y.K. Wu and M. Lacroix, Numerical simulation of the melting of scrap metal in a circular furnace, Int. Commun. Heat Mass Transfer, 22(1995), No. 4, p. 517. doi: 10.1016/0735-1933(95)00037-Y
      [9]
      K. Isobe, H. Maede, K. Ozawa, K. Umezawa, and C. Saito, Analysis of the scrap melting rate in high carbon molten iron, Tetsu-to-Hagané, 76(1990), No. 11, p. 2033.
      [10]
      A. Kruskopf and S. Louhenkilpi, 1-dimensional scrap melting model for steel converter (BOF), [in] Proceedings of the METEC & 2nd ESTAD, Düsseldorf, Germany, 2015, p. 15.
      [11]
      A. Kruskopf, Multiphysical Modeling Approach for Basic Oxygen Steelmaking Process [Dissertation], Aalto University, Finland, 2018, p. 12.
      [12]
      A. Kruskopf and V.V. Visuri, A gibbs energy minimization approach for modeling of chemical reactions in a basic oxygen furnace, Metall. Mater. Trans. B, 48(2017), No. 6, p. 3281. doi: 10.1007/s11663-017-1074-x
      [13]
      S. Deng, A.J. Xu, G. Yang, and H.B. Wang, Analyses and calculation of steel scrap melting in a multifunctional hot metal ladle, Steel Res. Int., 90(2018), No. 3, p. 1.
      [14]
      H.P. Sun, Y.C. Liu, C.C. Lin, and L.U. Muh-Jung, Experimental observation of spherical scrap melting in hot metal, [in] International Congress on the Science & Technology of Steelmaking, Beijing, China, 2015, p. 136.
      [15]
      F.M. Penz, J. Schenk, R. Ammer, G. Klösch, K. Pastucha, and M. Reischl, Diffusive steel scrap melting in carbon-saturated hot metal-phenomenological investigation at the solid-liquid interface, Materials, 12(2019), No. 8, p. 1358. doi: 10.3390/ma12081358
      [16]
      M. Gao, S.F. Yang, and Y.L. Zhang, Experimental study on mass transfer during scrap melting in the steelmaking process, Ironmaking Steelmaking, (2019), p. 1.
      [17]
      H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas-liquid mass transfer and flow phenomena in a peirce-smith converter: a numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092. doi: 10.1007/s12613-019-1831-8
      [18]
      J. Dongik, K. Yumkyum, S. Minsoo, and L. Joonho, Kinetics of carbon dissolution of coke in molten iron, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1308. doi: 10.1007/s11663-012-9724-5
      [19]
      A. Fluent, ANSYS Fluent Theory Guide, Release 15.0 ed., ANSYS Inc., Canonsburg, PA, 2013. ANSYS Inc., USA, 15317, 724.
      [20]
      J.X. Chen, Metallurgy of Iron and Steel (Steelmaking), The Metallurgical Industry Press, Beijing, 2012, p. 174.
      [21]
      J. Szekely, Y.K. Chuang, and J.W. Hlinka, The melting and dissolution of low-carbon steels in iron-carbon melts, Metall. Mater. Trans. B, 3(1972), No. 11, p. 2825. doi: 10.1007/BF02652849
      [22]
      Y.U. Kim and R. Pehlke, Mass transfer during dissolution of a solid into liquid in the iron-carbon system, Metall. Trans., 5(1974), No. 12, p. 2527. doi: 10.1007/BF02643873
      [23]
      M. Kosaka and S. Minowa, Mass-transfer from solid metal cylinder into liquid metal, Tetsu-to-Hagane, 52(1966), No. 12, p. 1748. doi: 10.2355/tetsutohagane1955.52.12_1748
      [24]
      M. Kosaka and S. Minowa, Mass-transfer from graphite cylinder into liquid Fe–C alloy, Tetsu-to- Hagane, 53(2010), No. 13, p. 1467.
      [25]
      K. Wu, Principle of Metallurgical Transmission, Peking University Press, Beijing, 2016, p. 142.
      [26]
      J.K. Wright, Steel dissolution in quiescent and gas stirred Fe/C melts, Metall. Mater. Trans. B, 20(1989), No. 3, p. 363. doi: 10.1007/BF02696988
      [27]
      Z.Y. Liu, Y.P. Bao, M. Wang, X. Li, and F.Z. Zeng, Austenite grain growth of medium carbon alloy steel with aluminum additions during heating process, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 282. doi: 10.1007/s12613-019-1736-6
      [28]
      V. Dakre, D.R. Peshwe, S.U. Pathak, and A. Likhite, Effect of austenitization temperature on microstructure and mechanical properties of low carbon equivalent carbidic austempered ductile iron, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 770. doi: 10.1007/s12613-018-1625-4
      [29]
      G.S Wei, R. Zhu, T.P Tang, and K. Dong, Study on the melting characteristics of steel scrap in molten steel, Ironmaking Steelmaking, 46(2019), No. 7, p. 609. doi: 10.1080/03019233.2019.1609738

    Catalog


    • /

      返回文章
      返回