Cite this article as: |
Xi Zhang, Shun-wei Zhu, Yu-jiang Li, Yong-li Li, Qiang Guo, and Tao Qi, Purification of specularite by centrifugation instead of flotation to produce iron oxide red pigment, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 56-65. https://doi.org/10.1007/s12613-020-2003-6 |
This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation. An iron concentrate with a grade of 65.1wt% and a recovery rate of 75.31% were obtained. A centrifugal concentrator served as the deep purification equipment for the preparation of iron oxide red pigments, and its optimal rotating drum speed, feed concentration, and other conditions were determined. Under optimal conditions, a high-purity iron oxide concentrate with a grade of 69.38wt% and a recovery rate of 80.89% were obtained and used as a raw material for preparing iron oxide red pigment. Calcining with sulfuric acid produced iron red pigments with different hues. Simultaneously, middlings with a grade of 60.20wt% and a recovery rate of 17.51% were obtained and could be used in blast furnace ironmaking. High-value utilization of specularite beneficiation products was thus achieved.
[1] |
X. Li, C.K. Wang, Y. Zeng, P.Y. Li, T.H. Xie, and Y.K. Zhang, Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate, J. Hazard. Mater., 317(2016), p. 563. doi: 10.1016/j.jhazmat.2016.06.021
|
[2] |
J.M. Lu and D. Dreisinger, Pressure oxidation of ferrous ions by oxygen and hematite precipitation from concentrated solution of calcium, copper and iron chlorides, Hydrometallurgy, 140(2013), p. 59. doi: 10.1016/j.hydromet.2013.09.001
|
[3] |
Z.C. Liu and Y.J. Zheng, Effect of Fe(Ⅱ) on the formation of iron oxide synthesized from pyrite cinders by hydrothermal process, Powder Technol., 209(2011), No. 1-3, p. 119. doi: 10.1016/j.powtec.2011.02.019
|
[4] |
D.X. Li, G.L. Gao, F.L. Meng, and C. Ji, Preparation of nano-iron oxide red pigment powders by use of cyanided tailings, J. Hazard. Mater., 155(2008), No. 1-2, p. 369. doi: 10.1016/j.jhazmat.2007.11.070
|
[5] |
A.E.C. Peres and M.I. Correa, Depression of iron oxides with corn starches, Miner. Eng., 9(1996), No. 12, p. 1227. doi: 10.1016/S0892-6875(96)00118-5
|
[6] |
S.Y. Yang and L.G. Wang, Measurement of froth zone and collection zone recoveries with various starch depressants in anionic flotation of hematite and quartz, Miner. Eng., 138(2019), p. 31. doi: 10.1016/j.mineng.2019.04.027
|
[7] |
X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187. doi: 10.1016/j.seppur.2012.10.015
|
[8] |
A.N. Santana and A.E.C. Peres, Reverse magnesite flotation, Miner. Eng., 14(2001), No. 1, p. 107. doi: 10.1016/S0892-6875(00)00164-3
|
[9] |
L.Z. Chen, N.Q. Ren, and D.H. Xiong, Experimental study on performance of a continuous centrifugal concentrator in reconcentrating fine hematite, Int. J. Miner. Process., 87(2008), No. 1-2, p. 9. doi: 10.1016/j.minpro.2008.01.002
|
[10] |
R. Burt, The role of gravity concentration in modern processing plants, Miner. Eng., 12(1999), No. 11, p. 1291. doi: 10.1016/S0892-6875(99)00117-X
|
[11] |
B. Klein, N.E. Altun, and H. Ghaffari, Use of centrifugal-gravity concentration for rejection of talc and recovery improvement in base-metal flotation, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 859. doi: 10.1007/s12613-016-1301-5
|
[12] |
R.Q. Honaker and A. Das, Ultrafine coal cleaning using a centrifugal fluidized-bed separator, Coal Prep., 24(2004), No. 1-2, p. 1. doi: 10.1080/07349340490467668
|
[13] |
A. Das and B. Sarkar, Advanced gravity concentration of fine particles: A review, Miner. Process. Extr. Metall. Rev., 39(2018), No. 6, p. 359. doi: 10.1080/08827508.2018.1433176
|
[14] |
A. Falconer, Gravity separation: Old technique/new methods, Phys. Sep. Sci. Eng., 12(2003), No. 1, p. 31. doi: 10.1080/1478647031000104293
|
[15] |
C.N. Katwika, M.-B. Kime, P.N.M. Kalenga, B.I. Mbuya, and T.R. Mwilen, Application of Knelson concentrator for beneficiation of copper–cobalt ore tailings, Miner. Process. Extr. Metall. Rev., 40(2019), No. 1, p. 35. doi: 10.1080/08827508.2018.1481057
|
[16] |
Y. Foucaud, Q. Dehaine, L.O. Filippov, and I.V. Filippova, Application of Falcon centrifuge as a cleaner alternative for complex tungsten ore processing, Minerals, 9(2019), No. 7, p. 448. doi: 10.3390/min9070448
|
[17] |
Q. Dehaine, Y. Foucaud, J.S. Kroll-Rabotin, and L.O. Filippov, Experimental investigation into the kinetics of Falcon UF concentration: Implications for fluid dynamic-based modelling, Sep. Purif. Technol., 215(2019), p. 590. doi: 10.1016/j.seppur.2019.01.048
|
[18] |
L.O. Filippov, Q. Dehaine, and I.V. Filippova, Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production – Part 3: Processing of fines using gravity and flotation, Miner. Eng., 95(2016), p. 96. doi: 10.1016/j.mineng.2016.06.004
|
[19] |
M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, J. Cleaner Prod., 84(2014), p. 411. doi: 10.1016/j.jclepro.2014.04.079
|
[20] |
R.Q. Honaker, D. Wang, and K. Ho, Application of the Falcon concentrator for fine coal cleaning, Miner. Eng., 9(1996), No. 11, p. 1143. doi: 10.1016/0892-6875(96)00108-2
|
[21] |
R.Q. Honaker, High capacity fine coal cleaning using an enhanced gravity concentrator, Miner. Eng., 11(1998), No. 12, p. 1191. doi: 10.1016/S0892-6875(98)00105-8
|
[22] |
X.N. Zhu, Y.J. Tao, Q.X. Sun, and Z.P. Man, The low efficiency of lignite separation by an enhanced gravity concentrator, Energy Sources Part A, 39(2017), No. 8, p. 835. doi: 10.1080/15567036.2016.1270373
|
[23] |
X.N. Zhu, Y.J. Tao, Q.X. Sun, and Z.P. Man, Enrichment and migration regularity of fine coal particles in enhanced gravity concentrator, Int. J. Miner. Process., 163(2017), p. 48. doi: 10.1016/j.minpro.2017.04.007
|
[24] |
G. Tozsin, C. Acar, and O. Sivrikaya, Evaluation of a Turkish lignite coal cleaning by conventional and enhanced gravity separation techniques, Int. J. Coal Prep. Util., 38(2018), No. 3, p. 135. doi: 10.1080/19392699.2016.1209191
|
[25] |
ISO, ISO 1248: 2006(E): Iron Oxide Pigments – Specifications and Methods of Tests, Switzerland, 2006.
|
[26] |
A.K. Majumder, G.J. Lyman, M. Brennan, and P.N. Holtham, Modeling of flowing film concentrators: Part 1. Water split behavior, Int. J. Miner. Process., 80(2006), No. 1, p. 71. doi: 10.1016/j.minpro.2006.01.009
|
[27] |
S. Ata, Phenomena in the froth phase of flotation — A review, Int. J. Miner. Process., 102-103(2012), p. 1. doi: 10.1016/j.minpro.2011.09.008
|
[28] |
L.O. Filippov, I.V. Filippova, and V.V. Severov, The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates, Miner. Eng., 23(2010), No. 2, p. 91. doi: 10.1016/j.mineng.2009.10.007
|
[29] |
Y.H. Wang and J.W. Ren, The flotation of quartz from iron minerals with a combined quaternary ammonium salt, Int. J. Miner. Process., 77(2005), No. 2, p. 116. doi: 10.1016/j.minpro.2005.03.001
|
[30] |
Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113. doi: 10.1007/s12613-018-1662-z
|
[31] |
L. Ergün and S. Ersayın, Studies on pinched sluice concentration. Part II: Characterization of flow over a pinched sluice, Miner. Eng., 15(2002), No. 6, p. 437. doi: 10.1016/S0892-6875(02)00059-6
|