留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 2
Feb.  2021

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2693
  • HTML全文浏览量:  511
  • PDF下载量:  79
  • 被引次数: 0
Zhong-qing Liu, Jian Zheng, Yi Wang,  and Xu Liu, Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 231-237. https://doi.org/10.1007/s12613-020-2034-z
Cite this article as:
Zhong-qing Liu, Jian Zheng, Yi Wang,  and Xu Liu, Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 231-237. https://doi.org/10.1007/s12613-020-2034-z
引用本文 PDF XML SpringerLink
研究论文

活化天然矿石选择性还原二氧化碳为无定形碳

  • Research Article

    Selective reduction of carbon dioxide into amorphous carbon over activated natural magnetite

    + Author Affiliations
    • Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechanical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90 min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.

    • loading
    • [1]
      A.Q. Chen and B.L. Lin, A simple framework for quantifying electrochemical CO2 fixation, Joule, 2(2018), No. 4, p. 594. doi: 10.1016/j.joule.2018.02.003
      [2]
      A.S. Agarwal, Y.M. Zhai, D. Hill, and N. Sridhar, The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility, ChemSusChem, 4(2011), No. 9, p. 1301. doi: 10.1002/cssc.201100220
      [3]
      D. Gao, R.M. Arán-Ais, H.S. Jeon, and B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products, Nat. Catal., 2(2019), No. 3, p. 198. doi: 10.1038/s41929-019-0235-5
      [4]
      X. Tan, H.A. Tahini, H. Arandiyan, and S.C. Smith, Electrocatalytic reduction of carbon dioxide to methane on single transition metal atoms supported on a defective boron nitride monolayer: First principle study, Adv. Theory Simul., 2(2019), No. 3, p. 1800094. doi: 10.1002/adts.201800094
      [5]
      P. Chen, B. Cui, Y.M. Bu, Z.F. Yang, and Y.Y. Wang, Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3−xO4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) microspheres for microwave-triggered controllable drug delivery, J. Nanopart. Res., 19(2017), No. 12, p. 398. doi: 10.1007/s11051-017-4096-z
      [6]
      H.P. He, Y.H. Zhong, X.L. Liang, W. Tan, J.X. Zhu, and C.Y. Wang, Natural Magnetite: An efficient catalyst for the degradation of organic contaminant, Sci. Rep., 5(2015), No. 1, p. 10139. doi: 10.1038/srep10139
      [7]
      M. Munoz, Z.M. de Pedro, J.A. Casas, and J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review, Appl. Catal. B, 176-177(2015), p. 249. doi: 10.1016/j.apcatb.2015.04.003
      [8]
      M.S. Fu, L.S. Chen, and S.Y. Chen, Preparation, structure of doped ferrite and its performance of decomposition of carbon dioxide to carbon, Chem. J. Chin. Univ., 26(2005), No. 12, p. 2279.
      [9]
      L.J. Ma, L.S. Chen, and S.Y. Chen, Study of the CO2 decomposition over doped Ni-ferrites, J. Phys. Chem. Solids, 68(2007), No. 7, p. 1330. doi: 10.1016/j.jpcs.2007.02.022
      [10]
      L.J. Ma, L.S. Chen, and S.Y. Chen, Study on the cycle decomposition of CO2 over NiCr0.08Fe1.92O4 and the microstructure of products, Mater. Chem. Phys., 105(2007), No. 1, p. 122. doi: 10.1016/j.matchemphys.2007.04.029
      [11]
      L.J. Ma, L.S. Chen, and S.Y. Chen, Studies on redox H2−CO2 cycle on CoCrxFe2−xO4, Solid State Sci., 11(2009), No. 1, p. 176. doi: 10.1016/j.solidstatesciences.2008.05.008
      [12]
      L.J. Ma, L.S. Chen, and S.Y. Chen, Study on the characteristics and activity of Ni−Cu−Zn ferrite for decomposition of CO2, Mater. Chem. Phys., 114(2009), No. 2-3, p. 692. doi: 10.1016/j.matchemphys.2008.10.050
      [13]
      Y. Tamaura and M. Tahata, Complete Reduction of carbon-dioxide to carbon using cation-excess magnetite, Nature, 346(1990), No. 6281, p. 255. doi: 10.1038/346255a0
      [14]
      C.L. Zhang, T.H. Wu, H.M. Yang, Y.Z. Jiang, and S.Y. Peng, Reduction of carbon-dioxide to carbon with active cation excess magnetite, Chem. J. Chin. Univ., 16(1995), No. 6, p. 955.
      [15]
      H.M. Yang, C.L. Zhang, T.H. Wu, Y.Z. Jiang, and S.Y. Peng, Preparation of Fe3+δO4 and their complete decomposition of CO2 to carbon, Acta. Chim. Sinica, 53(1995), No. 11, p. 1101.
      [16]
      S. Álvarez-Torrellas, M. Munoz, V. Mondejar, Z.M. de Pedro, and J.A. Casas, Boosting the catalytic activity of natural magnetite for wet peroxide oxidation, Environ. Sci. Pollut. Res., 27(2020), No. 2, p. 1176. doi: 10.1007/s11356-018-2171-3
      [17]
      E. Yamasue, H. Yamaguchi, H. Nakaoku, H. Okumura, and K.N. Ishihara, Carbon dioxide reduction into carbon by mechanically milled wustite, J. Mater. Sci., 42(2007), No. 13, p. 5196. doi: 10.1007/s10853-006-0458-0
      [18]
      E. Yamasue, H. Yamaguchi, H. Okumura, and K.N. Ishihara, Decomposition of carbon dioxide using mechanically-milled magnetite, J. Alloys Compd., 434(2007), p. 803.
      [19]
      J.S. Kim and J.R. Ahn, Characterization of wet processed (Ni, Zn)-ferrites for CO2 decomposition, J. Mater. Sci., 36(2001), No. 19, p. 4813. doi: 10.1023/A:1017999610010
      [20]
      J.S. Kim, J.R. Ahn, C.W. Lee, Y. Murakami, and D. Shindo, Morphological properties of ultra-fine (Ni,Zn)-ferrites and their ability to decompose CO2, J. Mater. Chem., 11(2001), No. 12, p. 3373. doi: 10.1039/b103890g
      [21]
      C. Nordhei, K. Mathisen, I. Bezverkhyy, and D. Nicholson, Decomposition of carbon dioxide over the putative cubic spinel nanophase cobalt, nickel, and zinc ferrites, J. Phys. Chem. C, 112(2008), No. 16, p. 6531. doi: 10.1021/jp7112158
      [22]
      C. Nordhei, K. Mathisen, O. Safonova, W. van Beek, and D.G. Nicholson, Decomposition of carbon dioxide at 500°C over reduced iron, cobalt, nickel, and zinc ferrites: A combined XANES−XRD study, J. Phys. Chem. C, 113(2009), No. 45, p. 19568. doi: 10.1021/jp9049473
      [23]
      L.S. Chen, S.Y. Chen, and G.L. Lu, Study the structure stability of NiFe2−xCrxO4 (x=0, 0.08) during H2/CO2 cycle reaction, J. Mater. Sci., 41(2006), No. 19, p. 6465. doi: 10.1007/s10853-006-0708-1
      [24]
      M.H. Khedr and A.A. Farghali, Microstructure, kinetics and mechanisms of CO2 catalytic decomposition over freshly reduced nano-crystallite CuFe2O4 at 400−600°C, Appl. Catal. B, 61(2005), No. 3-4, p. 219. doi: 10.1016/j.apcatb.2005.05.004
      [25]
      M.H. Khedr, A.A. Omar, and S.A. Abdel-Moaty, Reduction of carbon dioxide into carbon by freshly reduced CoFe2O4 nanoparticles, Mater. Sci. Eng. A, 432(2006), No. 1-2, p. 26. doi: 10.1016/j.msea.2006.06.012
      [26]
      T. Kodama, Y. Kitayama, M. Tsuji, and Y. Tamaura, Methanation of CO2 using ultrafine NixFe3−xO4, Energy, 22(1997), No. 2-3, p. 183. doi: 10.1016/S0360-5442(96)00097-7
      [27]
      D.G. Streets, K.J. Jiang, X.L. Hu, J.E. Sinton, X.Q. Zhang, D.Y. Xu, M.Z. Jacobson, and J. E. Hansen, Climate change - Recent reductions in China’s greenhouse gas emissions, Science, 294(2001), No. 5548, p. 1835. doi: 10.1126/science.1065226
      [28]
      J. Tollefson, Panel negotiates climate ‘synthesis report’, Nature, 450(2007), No. 7168, p. 327.
      [29]
      M. Tsuji, T. Yamamoto, Y. Tamaura, T. Kodama, and Y. Kitayama, Catalytic acceleration for CO2 decomposition into carbon by Rh, Pt or Ce impregnation onto Ni(II)-bearing ferrite, Appl. Catal. A, 142(1996), No. 1, p. 31. doi: 10.1016/0926-860X(96)00050-6
      [30]
      H.C. Shin, S.C. Choi, K.D. Jung, and S.H. Han, Mechanism of M ferrites (M = Cu and Ni) in the CO2 decomposition reaction, Chem. Mater., 13(2001), No. 4, p. 1238. doi: 10.1021/cm000658b
      [31]
      C.L. Zhang, S. Li, T.H. Wu, and S.Y. Peng, Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction, Mater. Chem. Phys., 58(1999), No. 2, p. 139. doi: 10.1016/S0254-0584(98)00267-3
      [32]
      C.L. Zhang, S. Li, L.J. Wang, T.H. Wu, and S.Y. Peng, Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite I. Preparation, characterization of magnetite, and its activity of decomposing carbon dioxide, Mater. Chem. Phys., 62(2000), No. 1, p. 44. doi: 10.1016/S0254-0584(99)00169-8
      [33]
      C.L. Zhang, S. Li, L.J. Wang, T.H. Wu, and S.Y. Peng, Studies on the decomposing carbon dioxide into carbon with oxygen-deficient magnetite II. The effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction, Mater. Chem. Phys., 62(2000), No. 1, p. 52. doi: 10.1016/S0254-0584(99)00168-6
      [34]
      H.C. Shin, J.H. Oh, J.C. Lee, S.H. Han, and S.C. Choi, The carbon dioxide decomposition reaction with (NixCu1−x)Fe2O4 solid solution, Phys. Status Solidi A, 189(2002), No. 3, p. 741. doi: 10.1002/1521-396X(200202)189:3<741::AID-PSSA741>3.0.CO;2-J
      [35]
      C.R. Lin, C.H. Su, C.Y. Chang, C.H. Hung, and Y.F. Huang, Synthesis of nanosized flake carbons by RF-chemical vapor method, Surf. Coat. Technol., 200(2006), No. 10, p. 3190. doi: 10.1016/j.surfcoat.2005.07.041
      [36]
      I.D. Rosca, F. Watari, M. Uo, and T. Akaska, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43(2005), No. 15, p. 3124. doi: 10.1016/j.carbon.2005.06.019
      [37]
      M. Keiluweit, P.S. Nico, M.G. Johnson, and M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44(2010), No. 4, p. 1247. doi: 10.1021/es9031419
      [38]
      L.S. Jia, J.J. Li, and W.P. Fang, Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide, Catal. Commun., 11(2009), No. 2, p. 87. doi: 10.1016/j.catcom.2009.08.016
      [39]
      M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama, and Y. Tamaura, Preparation and CO2 methanation activity of an ultrafine Ni(II) ferrite catalyst, J. Catal., 164(1996), No. 2, p. 315. doi: 10.1006/jcat.1996.0387

    Catalog


    • /

      返回文章
      返回