Cite this article as: |
Yong-fei Wang, Yi Guo, Sheng-dun Zhao, and Xiao-guang Fan, Direct preparation of semi-solid billets by the semi-solid isothermal heat treatment for commercial cold-rolled ZL104 aluminum alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1164-1173. https://doi.org/10.1007/s12613-020-2067-3 |
Semi-solid isothermal heat treatment was proposed to directly process cold-rolled ZL104 aluminum alloys and obtain semi-solid billets. The effects of two process parameters, namely, temperature and processing time, on the microstructure and hardness of the resulting billets were also experimentally examined. Average grain size (AGS) increased and the shape factor (SF) of the grain improved as the process temperature increased. The SF of the grain also increased with increasing processing time, and the AGS was augmented when the processing time was prolonged from 5 to 20 min at 570°C. The hardness of the aluminum alloy decreased because of the increase in AGS with increasing temperature and processing time. The optimal temperature and time for the preparation of semi-solid ZL104 aluminum alloys were 570°C and 5 min, respectively. Under optimal process parameters, the AGS, SF, and hardness of the resulting alloy were 35.88 µm, 0.81, and 55.24 MPa, respectively. The Lifshitz–Slyozov–Wagner relationship was analyzed to determine the coarsening rate constant at 570°C, and a rate constant of 1357.2 μm3/s was obtained.
[1] |
D.B. Spencer, R. Mehrabian, and M.C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range, Metall. Mater. Trans. B, 3(1972), No. 7, p. 1925. doi: 10.1007/BF02642580
|
[2] |
Y.F. Wang, S.D. Zhao, and C.Y. Zhang, Grain refinement of aluminum alloy bar by a modified RAP process for semi-solid forming, Mater. Trans., 58(2017), No. 2, p. 176. doi: 10.2320/matertrans.M2016271
|
[3] |
Y.F. Wang, S.D. Zhao, and C.Y. Zhang, Microstructures and mechanical properties of semi-solid squeeze casting ZL104 connecting rod, Trans. Nonferrous Met. Soc. China, 28(2018), No. 2, p. 235. doi: 10.1016/S1003-6326(18)64656-4
|
[4] |
Y. Xu, C. Chen, J.B. Jia, X.X. Zhang, H.H. Dai, and Y. Yang, Constitutive behavior of a SIMA processed magnesium alloy by employing repetitive upsetting-extrusion (RUE), J. Alloys Compd., 748(2018), p. 694. doi: 10.1016/j.jallcom.2018.03.205
|
[5] |
Y. Xu, L.X. Hu, J.B. Jia, and B. Xu, Microstructure evolution of a SIMA processed AZ91D magnesium alloy based on repetitive upsetting-extrusion (RUE) process, Mater. Charact., 118(2016), p. 309. doi: 10.1016/j.matchar.2016.06.011
|
[6] |
Y.F. Wang, S.D. Zhao, and C.Y. Zhang, Semi-solid billets prepared by radial forging strain-induced melt activation, Rare Met. Mater. Eng., 46(2017), No. 12, p. 3875.
|
[7] |
Y.F. Wang, S.D. Zhao, X.Z. Zhao, and Y.Q. Zhao, Effects of isothermal treatment parameters on the microstructure of semisolid alloys, Mater. Sci. Technol., 34(2018), No. 1, p. 104. doi: 10.1080/02670836.2017.1364329
|
[8] |
J.F. Jiang, Y. Wang, and H.V. Atkinson, Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction, Mater. Charact., 90(2014), p. 52. doi: 10.1016/j.matchar.2014.01.017
|
[9] |
Z.B. Chen, L. Li, R.F. Zhou, Y.H. Jiang, and R. Zhou, Study on refining mechanism of primary Si in semi-solid Al–25%Si alloy slurry prepared by rotating-rod induced nucleation, Solid State Phenom., 217-218(2014), p. 253. doi: 10.4028/www.scientific.net/SSP.217-218.253
|
[10] |
C.H. Jang, C.K. Jin, A. Bolouri, and C.G. Kang, Effect of forming conditions on mechanical properties of rheoformed thin plates with microchannels using electromagnetic stirring, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 228(2014), No. 3, p. 399. doi: 10.1177/0954405413496403
|
[11] |
Y.F. Wang, S.D. Zhao, and C.Y. Zhang, Microstructural evolution of semisolid 6063 aluminum alloy prepared by recrystallization and partial melting process, J. Mater. Eng. Perform., 26(2017), No. 9, p. 4354. doi: 10.1007/s11665-017-2854-9
|
[12] |
Y.B. Song, K.T. Park, and C.P. Hong, Recrystallization behavior of 7175 Al alloy during modified strain-induced melt-activated (SIMA) process, Mater. Trans., 47(2006), No. 4, p. 1250. doi: 10.2320/matertrans.47.1250
|
[13] |
J.F. Jiang, Y. Wang, and S.J. Luo, Application of equal channel angular extrusion to semi-solid processing of magnesium alloy, Mater. Charact., 58(2007), No. 2, p. 190. doi: 10.1016/j.matchar.2006.04.017
|
[14] |
Z.D. Zhao, Q. Chen, Z.J. Tang, and C.K. Hu, Microstructural evolution and tensile mechanical properties of AM60B magnesium alloy prepared by the SIMA route, J. Alloys Compd., 497(2010), No. 1-2, p. 402. doi: 10.1016/j.jallcom.2010.03.088
|
[15] |
Q. Chen, Z.D. Zhao, G. Chen, and B. Wang, Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy, J. Alloys Compd., 632(2015), p. 190. doi: 10.1016/j.jallcom.2015.01.185
|
[16] |
H.V. Atkinson, Modelling the semisolid processing of metallic alloys, Prog. Mater. Sci., 50(2005), No. 3, p. 341. doi: 10.1016/j.pmatsci.2004.04.003
|
[17] |
L. Org as, J.P. Gabathuler, T. Imwinkelried, C. Paradies, and M. Rappaz, Modelling of semi-solid processing using a modified temperature-dependent power-law model, Model. Simul. Mater. Sci. Eng., 11(2003), No. 4, p. 553. doi: 10.1088/0965-0393/11/4/309
|
[18] |
Y.F. Wang, S.D. Zhao, X.Z. Zhao, and Y.Q. Zhao, Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting, J. Mech. Sci. Technol., 31(2017), No. 8, p. 3917. doi: 10.1007/s12206-017-0737-5
|
[19] |
J.F. Jiang, Z.M. Du, Y. Wang, and S.J. Luo, Microstructural evolution of 7050 aluminum alloy semisolid billets fabricated by RAP process, Solid State Phenom., 217-218(2014), p. 29. doi: 10.4028/www.scientific.net/SSP.217-218.29
|
[20] |
Y.F. Wang, S.D. Zhao, S.Q. Fan, and Y.Q. Zhao, Semi-solid billet prepared by radial forging combined with unidirectional compression recrystallization and partial melting, Rare Met. Mater. Eng., 46(2017), No. 10, p. 2900.
|
[21] |
R.D. Doherty, H.I. Lee, and E.A. Feest, Microstructure of stir-cast metals, Mater. Sci. Eng., 65(1984), No. 1, p. 181. doi: 10.1016/0025-5416(84)90211-8
|
[22] |
M. Moradi, M. Nili-Ahmadabadi, B. Poorganji, B. Heidarian, M.H. Parsa, and T. Furuhara, Recrystallization behavior of ECAPed A356 alloy at semi-solid reheating temperature, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 4113. doi: 10.1016/j.msea.2010.03.021
|
[23] |
H. Mohammadi, M. Ketabchi, and A. Kalaki, Microstructure evolution of semi-solid 7075 aluminum alloy during reheating process, J. Mater. Eng. Perform., 20(2011), No. 7, p. 1256. doi: 10.1007/s11665-010-9762-6
|
[24] |
Y.F. Wang, S.D. Zhao, and C.Y. Zhang, Application of radial forging and remelting treatment to prepare semi-solid billet of AlMg0.7Si alloy, Solid State Phenom., 256(2016), p. 257. doi: 10.4028/www.scientific.net/SSP.256.257
|
[25] |
W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy, Scripta Mater., 65(2011), No. 11, p. 994. doi: 10.1016/j.scriptamat.2011.08.028
|
[26] |
M.F. Qi, Y.L. Kang, Y. Yan, G.M. Zhu, and W.N. Liao, Comparison of microstructure and mechanical properties of AZ91D alloy formed by rheomolding and high-pressure die casting, J. Mater. Eng. Perform., 24(2015), No. 10, p. 3826. doi: 10.1007/s11665-015-1662-3
|
[27] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater., 68(2013), No. 7, p. 526. doi: 10.1016/j.scriptamat.2012.12.002
|
[28] |
E. Hug and C. Keller, Size effects and magnetoelastic couplings: A link between Hall–Petch behaviour and coercive field in soft ferromagnetic metals, Philos. Mag., 99(2019), No. 11, p. 1297. doi: 10.1080/14786435.2019.1580397
|
[29] |
J.F. Jiang, Y. Wang, G.F. Xiao, and X. Nie, Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP, J. Mater. Process. Technol., 238(2016), p. 361. doi: 10.1016/j.jmatprotec.2016.06.020
|
[30] |
B. Binesh and M. Aghaie-Khafri, Phase evolution and mechanical behavior of the semi-solid SIMA processed 7075 aluminum alloy, Metals, 6(2016), No. 3, art. No. 42. doi: 10.3390/met6030042
|
[31] |
Q. Chen, Z.D. Zhao, Z.X. Zhao, C.K. Hu, and D.Y. Shu, Microstructure development and thixoextrusion of magnesium alloy prepared by repetitive upsetting-extrusion, J. Alloys Compd., 509(2011), No. 26, p. 7303. doi: 10.1016/j.jallcom.2011.04.113
|
[32] |
B. Binesh and M. Aghaie-Khafri, Microstructure and texture characterization of 7075 Al alloy during the SIMA process, Mater. Charact., 106(2015), p. 390. doi: 10.1016/j.matchar.2015.06.013
|
[33] |
F.L. Jiang, H. Zhang, S.C. Weng, and D.F. Fu, Characterization of dynamic microstructural evolution of AA7150 aluminum alloy at high strain rate during hot deformation, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 51. doi: 10.1016/S1003-6326(16)64087-6
|
[34] |
Q.Y. Hu, H.D. Zhao, and F.D. Li, Effects of manufacturing processes on microstructure and properties of Al/A356–B4C composites, Mater. Manuf. Process., 31(2016), No. 10, p. 1292. doi: 10.1080/10426914.2016.1151049
|
[35] |
S.L. Lü, S.S. Wu, Z.M. Zhu, P. An, and Y.W. Mao, Effect of semi-solid processing on microstructure and mechanical properties of 5052 aluminum alloy, Trans. Nonferrous Met. Soc. China, 20(2010), p. s758. doi: 10.1016/S1003-6326(10)60577-8
|