留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 7
Jul.  2021

图(6)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3446
  • HTML全文浏览量:  652
  • PDF下载量:  74
  • 被引次数: 0
Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li,  and Bing Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1224-1232. https://doi.org/10.1007/s12613-020-2076-2
Cite this article as:
Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li,  and Bing Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1224-1232. https://doi.org/10.1007/s12613-020-2076-2
引用本文 PDF XML SpringerLink
研究论文

不同温度下CeO2预煅烧对甲醇氧化反应中Pt/CeO2–C电催化剂性能的影响

    * 共同第一作者
  • Research Article

    Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction

    + Author Affiliations
    • Pt/CeO2–C catalysts with CeO2 pre-calcined at 300–600°C were synthesized by combining hydrothermal calcination and wet impregnation. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2–C catalysts in methanol oxidation were investigated. The Pt/CeO2–C catalysts with pre-calcined CeO2 at 300–600°C showed an average particle size of 2.6–2.9 nm and exhibited better methanol electro-oxidation catalytic activity than the commercial Pt/C catalyst. In specific, the Pt/CeO2–C catalysts with pre-calcined CeO2 at 400°C displayed the highest electrochemical surface area value of 68.14 m2·g−1 and If/Ib ratio (the ratio of the forward scanning peak current density (If) and the backward scanning peak current density (Ib)) of 1.26, which are considerably larger than those (53.23 m2·g−1 and 0.79, respectively) of the commercial Pt/C catalyst, implying greatly enhanced CO tolerance.

    • loading
    • [1]
      W.X. Du, G.X. Yang, E. Wong, N.A. Deskins, A.I. Frenkel, D. Su, and X.W. Teng, Platinum–tin oxide core–shell catalysts for efficient electro-oxidation of ethanol, J. Am. Chem. Soc., 136(2014), 31, p. 10862. doi: 10.1021/ja505456w
      [2]
      S.S. Munjewar, S.B. Thombre, and R.K. Mallick, Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review, Renewable Sustainable Energy Rev., 67(2017), p. 1087. doi: 10.1016/j.rser.2016.09.002
      [3]
      J.M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, and C. Lamy, How bimetallic electrocatalysts does work for reactions involved in fuel cells?: Example of ethanol oxidation and comparison to methanol, Electrochim. Acta, 50(2005), No. 25-26, p. 5118. doi: 10.1016/j.electacta.2005.01.051
      [4]
      N.S. Pai, P.S. Chang, and S.K. Yen, Platinum/vivianite bifunction catalysts for DMFC, Int. J. Hydrogen Energy, 38(2013), No. 13, p. 5259. doi: 10.1016/j.ijhydene.2013.02.089
      [5]
      C. Jackson, O. Conrad, and P. Levecque, Systematic study of Pt–Ru/C catalysts prepared by chemical deposition for direct methanol fuel cells, Electrocatalysis, 8(2017), No. 3, p. 224. doi: 10.1007/s12678-017-0359-9
      [6]
      A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich, and U. Stimming, Preparation of a Pt–Ru/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. Acta, 47(2002), No. 22-23, p. 3733. doi: 10.1016/S0013-4686(02)00343-2
      [7]
      V. Thiagarajan, P. Karthikeyan, R. Manoharan, S. Sampath, A. Hernández-Ramírez, M.E. Sánchez-Castro, I.L. Alonso-Lemus, and F.J. Rodríguez-Varela, Pt–Ru–NiTiO3 nanoparticles dispersed on Vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR), Electrocatalysis, 9(2018), No. 5, p. 582. doi: 10.1007/s12678-017-0450-2
      [8]
      D. Pan, X.W. Li, and A.F. Zhang, Platinum assisted by carbon quantum dots for methanol electro-oxidation, Appl. Surf. Sci., 427(2018), p. 715. doi: 10.1016/j.apsusc.2017.09.060
      [9]
      H.S. Liu, C.J. Song, L. Zhang, J.J. Zhang, H.J. Wang, and D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 155(2006), No. 2, p. 95. doi: 10.1016/j.jpowsour.2006.01.030
      [10]
      A. Glüsen, F. Dionigi, P. Paciok, M. Heggen, M. Müller, L. Gan, P. Strasser, R.E. Dunin-Borkowski, and D. Stolten, Dealloyed PtNi-core–shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells, ACS Catal., 9(2019), No. 5, p. 3764. doi: 10.1021/acscatal.8b04883
      [11]
      A. Serrà, M. Montiel, E. Gómez, and E. Vallés, Electrochemical synthesis of mesoporous CoPt nanowires for methanol oxidation, Nanomaterials, 4(2014), No. 2, p. 189. doi: 10.3390/nano4020189
      [12]
      L.G. Martin, I. Green, X. Wang, S. Pasupathi, and B.G. Pollet, Pt–Sn/C as a possible methanol-tolerant cathode catalyst for DMFC, Electrocatalysis, 4(2013), No. 3, p. 144. doi: 10.1007/s12678-013-0131-8
      [13]
      S. Zhang, Z.M. Xia, T. Ni, Z.Y. Zhang, Y.Y. Ma, and Y.Q. Qu, Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature, J. Catal., 359(2018), p. 101. doi: 10.1016/j.jcat.2018.01.004
      [14]
      S.K. Meher and G.R. Rao, Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: Microstructural effect on promoting Pt/C for methanol electrooxidation, ACS Catal., 2(2012), No. 12, p. 2795. doi: 10.1021/cs300473e
      [15]
      L. Nie, D.H. Mei, H.F. Xiong, B. Peng, Z.B. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, and Y. Wang, Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation, Science, 358(2017), No. 6369, p. 1419. doi: 10.1126/science.aao2109
      [16]
      Z.M. Cui, L.G. Feng, C.P. Liu, and W. Xing, Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation, J. Power Sources, 196(2011), No. 5, p. 2621. doi: 10.1016/j.jpowsour.2010.08.118
      [17]
      X.H. Wang, X.L. Hu, J.L. Huang, W.J. Zhang, W.J. Ji, Y. Hui, and X.X. Yao, Electrospinning synthesis of porous carbon fiber supported Pt–SnO2 anode catalyst for direct ethanol fuel cell, Solid State Sci., 94(2019), p. 64. doi: 10.1016/j.solidstatesciences.2019.05.018
      [18]
      H. Lin, Y.B. Dong, and L.Y. Jiang, Preparation of calcium carbonate particles coated with titanium dioxide, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p. 592. doi: 10.1016/S1674-4799(09)60102-3
      [19]
      T.T. Ai, F. Wang, and X.M. Feng, Oxidation behavior of in-situ Al2O3/TiAl composites at 900°C in static air, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 339. doi: 10.1016/S1674-4799(09)60061-3
      [20]
      P. Justin and G.R. Rao, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst, Int. J. Hydrogen Energy, 36(2011), No. 10, p. 5875. doi: 10.1016/j.ijhydene.2011.01.122
      [21]
      X.Y. Wang, J.C. Zhang, X.D. Cao, Y.S. Jiang, and H. Zhu, Synthesis and characterization of Pt–MoOx–TiO2 electrodes for direct ethanol fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 5, art. No. 594. doi: 10.1007/s12613-011-0483-0
      [22]
      S.Y. Song, X. Wang, and H.J. Zhang, CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application, NPG Asia Mater., 7(2015), No. 5, art. No. e179. doi: 10.1038/am.2015.27
      [23]
      S.P. Yu, Q.B. Liu, W.S. Yang, K.F. Han, Z.M. Wang, and H. Zhu, Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells, Electrochim. Acta, 94(2013), p. 245. doi: 10.1016/j.electacta.2013.01.149
      [24]
      F. Xu, D.Q. Wang, B.S. Sa, Y. Yu, and S.C. Mu, One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC, Int. J. Hydrogen Energy, 42(2017), No. 18, p. 13011. doi: 10.1016/j.ijhydene.2017.04.039
      [25]
      W. Wang, Y.J. Dong, Y. Yang, D. Chai, Y.M. Kang, and Z.Q. Lei, CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction, Int. J. Hydrogen Energy, 43(2018), No. 27, p. 12119. doi: 10.1016/j.ijhydene.2018.04.231
      [26]
      H. Xu, A.L. Wang, Y.X. Tong, and G.R. Li, Enhanced catalytic activity and stability of Pt/CeO2/PANI hybrid hollow nanorod arrays for methanol electro-oxidation, ACS Catal., 6(2016), No. 8, p. 5198. doi: 10.1021/acscatal.6b01010
      [27]
      G.L. Cordeiro, E.F. de Camargo, M.C.L. Santos, C.V. Pereira, V. Ussui, N.B. de Lima, A.O. Neto, and D.R.R. Lazar, Improved Pt/CeO2 electrocatalysts for ethanol electro-oxidation, Int. J. Electrochem. Sci., 13(2018), No. 7, p. 6388.
      [28]
      B.B. He, Q.G. Zhao, Z.G. Zeng, X.H. Wang, and S. Han, Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature, J. Mater. Sci., 50(2015), No. 19, p. 6339. doi: 10.1007/s10853-015-9181-z
      [29]
      Z.Y. Qi, C.X. Xiao, C. Liu, T.W. Goh, L. Zhou, R. Maligal-Ganesh, Y.C. Pei, X.L. Li, L.A. Curtiss, and W.Y. Huang, Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 139(2017), No. 13, p. 4762. doi: 10.1021/jacs.6b12780
      [30]
      J.J. Yang, X.Y. Tan, Y. Qian, L. Li, Y. Xue, Z. Dai, H.T. Wang, W.L. Qu, and Y.Y. Chu, Methanol oxidation on Pt/CeO2@C–N electrocatalysts prepared by the in-situ carbonization of polyvinylpyrrolidone, J. Appl. Electrochem., 46(2016), No. 7, p. 779. doi: 10.1007/s10800-016-0969-6
      [31]
      D.M. Gu, Y.Y. Chu, Z.B. Wang, Z.Z. Jiang, G.P. Yin, and Y. Liu, Methanol oxidation on Pt/CeO2–C electrocatalyst prepared by microwave-assisted ethylene glycol process, Appl. Catal. B, 102(2011), No. 1-2, p. 9. doi: 10.1016/j.apcatb.2010.11.018
      [32]
      J.G. Yu and B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays, Appl. Catal. B, 94(2010), No. 3-4, p. 295. doi: 10.1016/j.apcatb.2009.12.003
      [33]
      F. Abbas, J. Iqbal, T. Jan, N. Badshah, Q. Mansoor, and M. Ismail, Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 102. doi: 10.1007/s12613-016-1216-1
      [34]
      Z.Y. Cai, B. Song, L.F. Li, Z. Liu, and X.K. Cui, Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 565. doi: 10.1007/s12613-019-1765-1
      [35]
      K. Fugane, T. Mori, D.R. Ou, A. Suzuki, H. Yoshikawa, T. Masuda, K. Uosaki, Y. Yamashita, S. Ueda, K. Kobayashi, N. Okazaki, I. Matolinova, and V. Matolin, Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application, Electrochim. Acta, 56(2011), No. 11, p. 3874. doi: 10.1016/j.electacta.2011.02.034
      [36]
      B.J. Kennedy and A. Hamnett, Oxide formation and reactivity for methanol oxidation on platinised carbon anodes, J. Electroanal. Chem. Interfacial Electrochem., 283(1990), No. 1-2, p. 271. doi: 10.1016/0022-0728(90)87395-Z
      [37]
      F. Larachi, J. Pierre, A. Adnot, and A. Bernis, Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts, Appl. Surf. Sci., 195(2002), No. 1-4, p. 236. doi: 10.1016/S0169-4332(02)00559-7
      [38]
      J. Zhao, W.X. Chen, Y.F. Zheng, and X. Li, Novel carbon supported hollow Pt nanospheres for methanol electrooxidation, J. Power Sources, 162(2006), No. 1, p. 168. doi: 10.1016/j.jpowsour.2006.06.090
      [39]
      A.B. Yousaf, M. Imran, N. Uwitonze, A. Zeb, S.J. Zaidi, T.M. Ansari, G. Yasmeen, and S. Manzoor, Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions, J. Phys. Chem. C, 121(2017), No. 4, p. 2069. doi: 10.1021/acs.jpcc.6b11528
      [40]
      X.T. Yuan, H.X. Ge, X.Y. Liu, X. Wang, W.G. Chen, W.J. Dong, and F.Q. Huang, Efficient catalyst of defective CeO2−x and few-layer carbon hybrid for oxygen reduction reaction, J. Alloys Compd., 688(2016), p. 613. doi: 10.1016/j.jallcom.2016.07.060
      [41]
      C. Wei, S.N. Sun, D. Mandler, X. Wang, S.Z. Qiao, and Z.J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev., 48(2019), No. 9, p. 2518. doi: 10.1039/C8CS00848E
      [42]
      Y.C. Zhao, L. Zhan, J.N. Tian, S.L. Nie, and Z. Ning, Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium, Electrochim. Acta, 56(2011), No. 5, p. 1967. doi: 10.1016/j.electacta.2010.12.005
      [43]
      C.C. Ting, C.H. Chao, C.Y. Tsai, I.K. Cheng, and F.M. Pan, Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect, Appl. Surf. Sci., 416(2017), p. 365. doi: 10.1016/j.apsusc.2017.04.156
      [44]
      F.W. Zhan, T. Bian, W.G. Zhao, H. Zhang, M.S. Jin, and D.R. Yang, Facile synthesis of Pd–Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation, CrystEngComm, 16(2014), No. 12, p. 2411. doi: 10.1039/C3CE42362J
      [45]
      G.L. Bai, C. Liu, Z. Gao, B.Y. Lu, X.L. Tong, X.Y. Guo, and N.J. Yang, Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation, Small, 15(2019), No. 38, art. No. 1902951. doi: 10.1002/smll.201902951
      [46]
      H.L. Chen, J.L. Duan, X.L. Zhang, Y.F. Zhang, C. Guo, L. Nie, and X.W. Liu, One step synthesis of Pt/CeO2–graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell, Mater. Lett., 126(2014), p. 9. doi: 10.1016/j.matlet.2014.03.095
      [47]
      M.A. Scibioh, S.K. Kim, E.A. Cho, T.H. Lim, S.A. Hong, and H.Y. Ha, Pt–CeO2/C anode catalyst for direct methanol fuel cells, Appl. Catal. B, 84(2008), No. 3-4, p. 773. doi: 10.1016/j.apcatb.2008.06.017
      [48]
      C.T. Campbell and C.H.F. Peden, Oxygen vacancies and catalysis on ceria surfaces, Science, 309(2005), No. 5735, p. 713. doi: 10.1126/science.1113955
      [49]
      E. Mamontov, W. Dmowski, T. Egami, and C.C. Kao, Electronic excitation in a catalytic support oxide, CeO2, J. Phys. Chem. Solids, 61(2000), No. 3, p. 431. doi: 10.1016/S0022-3697(99)00331-5
      [50]
      K. Yoon, Y. Yang, P. Lu, D.H. Wan, H.C. Peng, K.S. Masias, P.T. Fanson, C.T. Campbell, and Y.N. Xia, A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers, Angew. Chem. Int. Ed., 51(2012), No. 38, p. 9543. doi: 10.1002/anie.201203755
      [51]
      A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, and C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes, J. Electroanal. Chem., 444(1998), No. 1, p. 41. doi: 10.1016/S0022-0728(97)00558-5
      [52]
      M.-S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, and B. Makiabadi, Electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide–chitosan for methanol electrooxidation, J. Mater. Sci.: Mater. Electron., 28(2017), No. 17, p. 12373. doi: 10.1007/s10854-017-7057-5
      [53]
      S. Ramani, S. Sarkar, V. Vemuri, and S.C. Peter, Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid, J. Mater. Chem. A, 5(2017), No. 23, p. 11572. doi: 10.1039/C6TA06339J
      [54]
      J.J. Yang, Y.Y. Chu, L. Li, H.T. Wang, Z. Dai, and X.Y. Tan, Effects of calcination temperature and CeO2 contents on the performance of Pt/CeO2−CNTs hybrid nanotube catalysts for methanol oxidation, J. Appl. Electrochem., 46(2016), No. 3, p. 369. doi: 10.1007/s10800-016-0931-7

    Catalog


    • /

      返回文章
      返回