Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction

Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li, Bing Li

图(6)  /  表(3)

分享

计量
  • 文章访问数:  3505
  • HTML全文浏览量:  833
  • PDF下载量:  78
  • 被引次数: 0

目录

Cite this article as:

Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li, and Bing Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp.1224-1232. https://dx.doi.org/10.1007/s12613-020-2076-2
Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li, and Bing Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp.1224-1232. https://dx.doi.org/10.1007/s12613-020-2076-2
引用本文 PDF XML SpringerLink
研究论文

不同温度下CeO2预煅烧对甲醇氧化反应中Pt/CeO2–C电催化剂性能的影响

Research Article

Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction

Author Affilications

    *These authors contributed equally to this work.

    Corresponding author:

    Shi-you Guan E-mail: syguan@shu.edu.cn

    Bing Li E-mail: drlibing@163.com, bingli@ecust.edu.cn

  • Funds: This work was financially supported by the National Natural Science Foundation of China (No. 51774145)
  • Received: 24 March 2020; Revised: 18 April 2020; Accepted: 20 April 2020; Available online: 23 April 2020

Pt/CeO2–C catalysts with CeO2 pre-calcined at 300–600°C were synthesized by combining hydrothermal calcination and wet impregnation. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2–C catalysts in methanol oxidation were investigated. The Pt/CeO2–C catalysts with pre-calcined CeO2 at 300–600°C showed an average particle size of 2.6–2.9 nm and exhibited better methanol electro-oxidation catalytic activity than the commercial Pt/C catalyst. In specific, the Pt/CeO2–C catalysts with pre-calcined CeO2 at 400°C displayed the highest electrochemical surface area value of 68.14 m2·g−1 and If/Ib ratio (the ratio of the forward scanning peak current density (If) and the backward scanning peak current density (Ib)) of 1.26, which are considerably larger than those (53.23 m2·g−1 and 0.79, respectively) of the commercial Pt/C catalyst, implying greatly enhanced CO tolerance.

 

  • [1]

    W.X. Du, G.X. Yang, E. Wong, N.A. Deskins, A.I. Frenkel, D. Su, and X.W. Teng, Platinum–tin oxide core–shell catalysts for efficient electro-oxidation of ethanol, J. Am. Chem. Soc., 136(2014), 31, p. 10862. DOI: 10.1021/ja505456w

    [2]

    S.S. Munjewar, S.B. Thombre, and R.K. Mallick, Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review, Renewable Sustainable Energy Rev., 67(2017), p. 1087. DOI: 10.1016/j.rser.2016.09.002

    [3]

    J.M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, and C. Lamy, How bimetallic electrocatalysts does work for reactions involved in fuel cells?: Example of ethanol oxidation and comparison to methanol, Electrochim. Acta, 50(2005), No. 25-26, p. 5118. DOI: 10.1016/j.electacta.2005.01.051

    [4]

    N.S. Pai, P.S. Chang, and S.K. Yen, Platinum/vivianite bifunction catalysts for DMFC, Int. J. Hydrogen Energy, 38(2013), No. 13, p. 5259. DOI: 10.1016/j.ijhydene.2013.02.089

    [5]

    C. Jackson, O. Conrad, and P. Levecque, Systematic study of Pt–Ru/C catalysts prepared by chemical deposition for direct methanol fuel cells, Electrocatalysis, 8(2017), No. 3, p. 224. DOI: 10.1007/s12678-017-0359-9

    [6]

    A.J. Dickinson, L.P.L. Carrette, J.A. Collins, K.A. Friedrich, and U. Stimming, Preparation of a Pt–Ru/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. Acta, 47(2002), No. 22-23, p. 3733. DOI: 10.1016/S0013-4686(02)00343-2

    [7]

    V. Thiagarajan, P. Karthikeyan, R. Manoharan, S. Sampath, A. Hernández-Ramírez, M.E. Sánchez-Castro, I.L. Alonso-Lemus, and F.J. Rodríguez-Varela, Pt–Ru–NiTiO3 nanoparticles dispersed on Vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR), Electrocatalysis, 9(2018), No. 5, p. 582. DOI: 10.1007/s12678-017-0450-2

    [8]

    D. Pan, X.W. Li, and A.F. Zhang, Platinum assisted by carbon quantum dots for methanol electro-oxidation, Appl. Surf. Sci., 427(2018), p. 715. DOI: 10.1016/j.apsusc.2017.09.060

    [9]

    H.S. Liu, C.J. Song, L. Zhang, J.J. Zhang, H.J. Wang, and D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 155(2006), No. 2, p. 95. DOI: 10.1016/j.jpowsour.2006.01.030

    [10]

    A. Glüsen, F. Dionigi, P. Paciok, M. Heggen, M. Müller, L. Gan, P. Strasser, R.E. Dunin-Borkowski, and D. Stolten, Dealloyed PtNi-core–shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells, ACS Catal., 9(2019), No. 5, p. 3764. DOI: 10.1021/acscatal.8b04883

    [11]

    A. Serrà, M. Montiel, E. Gómez, and E. Vallés, Electrochemical synthesis of mesoporous CoPt nanowires for methanol oxidation, Nanomaterials, 4(2014), No. 2, p. 189. DOI: 10.3390/nano4020189

    [12]

    L.G. Martin, I. Green, X. Wang, S. Pasupathi, and B.G. Pollet, Pt–Sn/C as a possible methanol-tolerant cathode catalyst for DMFC, Electrocatalysis, 4(2013), No. 3, p. 144. DOI: 10.1007/s12678-013-0131-8

    [13]

    S. Zhang, Z.M. Xia, T. Ni, Z.Y. Zhang, Y.Y. Ma, and Y.Q. Qu, Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature, J. Catal., 359(2018), p. 101. DOI: 10.1016/j.jcat.2018.01.004

    [14]

    S.K. Meher and G.R. Rao, Polymer-assisted hydrothermal synthesis of highly reducible shuttle-shaped CeO2: Microstructural effect on promoting Pt/C for methanol electrooxidation, ACS Catal., 2(2012), No. 12, p. 2795. DOI: 10.1021/cs300473e

    [15]

    L. Nie, D.H. Mei, H.F. Xiong, B. Peng, Z.B. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, and Y. Wang, Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation, Science, 358(2017), No. 6369, p. 1419. DOI: 10.1126/science.aao2109

    [16]

    Z.M. Cui, L.G. Feng, C.P. Liu, and W. Xing, Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation, J. Power Sources, 196(2011), No. 5, p. 2621. DOI: 10.1016/j.jpowsour.2010.08.118

    [17]

    X.H. Wang, X.L. Hu, J.L. Huang, W.J. Zhang, W.J. Ji, Y. Hui, and X.X. Yao, Electrospinning synthesis of porous carbon fiber supported Pt–SnO2 anode catalyst for direct ethanol fuel cell, Solid State Sci., 94(2019), p. 64. DOI: 10.1016/j.solidstatesciences.2019.05.018

    [18]

    H. Lin, Y.B. Dong, and L.Y. Jiang, Preparation of calcium carbonate particles coated with titanium dioxide, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p. 592. DOI: 10.1016/S1674-4799(09)60102-3

    [19]

    T.T. Ai, F. Wang, and X.M. Feng, Oxidation behavior of in-situ Al2O3/TiAl composites at 900°C in static air, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 339. DOI: 10.1016/S1674-4799(09)60061-3

    [20]

    P. Justin and G.R. Rao, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst, Int. J. Hydrogen Energy, 36(2011), No. 10, p. 5875. DOI: 10.1016/j.ijhydene.2011.01.122

    [21]

    X.Y. Wang, J.C. Zhang, X.D. Cao, Y.S. Jiang, and H. Zhu, Synthesis and characterization of Pt–MoOx–TiO2 electrodes for direct ethanol fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 5, art. No. 594. DOI: 10.1007/s12613-011-0483-0

    [22]

    S.Y. Song, X. Wang, and H.J. Zhang, CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application, NPG Asia Mater., 7(2015), No. 5, art. No. e179. DOI: 10.1038/am.2015.27

    [23]

    S.P. Yu, Q.B. Liu, W.S. Yang, K.F. Han, Z.M. Wang, and H. Zhu, Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells, Electrochim. Acta, 94(2013), p. 245. DOI: 10.1016/j.electacta.2013.01.149

    [24]

    F. Xu, D.Q. Wang, B.S. Sa, Y. Yu, and S.C. Mu, One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC, Int. J. Hydrogen Energy, 42(2017), No. 18, p. 13011. DOI: 10.1016/j.ijhydene.2017.04.039

    [25]

    W. Wang, Y.J. Dong, Y. Yang, D. Chai, Y.M. Kang, and Z.Q. Lei, CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction, Int. J. Hydrogen Energy, 43(2018), No. 27, p. 12119. DOI: 10.1016/j.ijhydene.2018.04.231

    [26]

    H. Xu, A.L. Wang, Y.X. Tong, and G.R. Li, Enhanced catalytic activity and stability of Pt/CeO2/PANI hybrid hollow nanorod arrays for methanol electro-oxidation, ACS Catal., 6(2016), No. 8, p. 5198. DOI: 10.1021/acscatal.6b01010

    [27]

    G.L. Cordeiro, E.F. de Camargo, M.C.L. Santos, C.V. Pereira, V. Ussui, N.B. de Lima, A.O. Neto, and D.R.R. Lazar, Improved Pt/CeO2 electrocatalysts for ethanol electro-oxidation, Int. J. Electrochem. Sci., 13(2018), No. 7, p. 6388.

    [28]

    B.B. He, Q.G. Zhao, Z.G. Zeng, X.H. Wang, and S. Han, Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature, J. Mater. Sci., 50(2015), No. 19, p. 6339. DOI: 10.1007/s10853-015-9181-z

    [29]

    Z.Y. Qi, C.X. Xiao, C. Liu, T.W. Goh, L. Zhou, R. Maligal-Ganesh, Y.C. Pei, X.L. Li, L.A. Curtiss, and W.Y. Huang, Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 139(2017), No. 13, p. 4762. DOI: 10.1021/jacs.6b12780

    [30]

    J.J. Yang, X.Y. Tan, Y. Qian, L. Li, Y. Xue, Z. Dai, H.T. Wang, W.L. Qu, and Y.Y. Chu, Methanol oxidation on Pt/CeO2@C–N electrocatalysts prepared by the in-situ carbonization of polyvinylpyrrolidone, J. Appl. Electrochem., 46(2016), No. 7, p. 779. DOI: 10.1007/s10800-016-0969-6

    [31]

    D.M. Gu, Y.Y. Chu, Z.B. Wang, Z.Z. Jiang, G.P. Yin, and Y. Liu, Methanol oxidation on Pt/CeO2–C electrocatalyst prepared by microwave-assisted ethylene glycol process, Appl. Catal. B, 102(2011), No. 1-2, p. 9. DOI: 10.1016/j.apcatb.2010.11.018

    [32]

    J.G. Yu and B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays, Appl. Catal. B, 94(2010), No. 3-4, p. 295. DOI: 10.1016/j.apcatb.2009.12.003

    [33]

    F. Abbas, J. Iqbal, T. Jan, N. Badshah, Q. Mansoor, and M. Ismail, Structural, morphological, Raman, optical, magnetic, and antibacterial characteristics of CeO2 nanostructures, Int. J. Miner. Metall. Mater., 23(2016), No. 1, p. 102. DOI: 10.1007/s12613-016-1216-1

    [34]

    Z.Y. Cai, B. Song, L.F. Li, Z. Liu, and X.K. Cui, Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 565. DOI: 10.1007/s12613-019-1765-1

    [35]

    K. Fugane, T. Mori, D.R. Ou, A. Suzuki, H. Yoshikawa, T. Masuda, K. Uosaki, Y. Yamashita, S. Ueda, K. Kobayashi, N. Okazaki, I. Matolinova, and V. Matolin, Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application, Electrochim. Acta, 56(2011), No. 11, p. 3874. DOI: 10.1016/j.electacta.2011.02.034

    [36]

    B.J. Kennedy and A. Hamnett, Oxide formation and reactivity for methanol oxidation on platinised carbon anodes, J. Electroanal. Chem. Interfacial Electrochem., 283(1990), No. 1-2, p. 271. DOI: 10.1016/0022-0728(90)87395-Z

    [37]

    F. Larachi, J. Pierre, A. Adnot, and A. Bernis, Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts, Appl. Surf. Sci., 195(2002), No. 1-4, p. 236. DOI: 10.1016/S0169-4332(02)00559-7

    [38]

    J. Zhao, W.X. Chen, Y.F. Zheng, and X. Li, Novel carbon supported hollow Pt nanospheres for methanol electrooxidation, J. Power Sources, 162(2006), No. 1, p. 168. DOI: 10.1016/j.jpowsour.2006.06.090

    [39]

    A.B. Yousaf, M. Imran, N. Uwitonze, A. Zeb, S.J. Zaidi, T.M. Ansari, G. Yasmeen, and S. Manzoor, Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions, J. Phys. Chem. C, 121(2017), No. 4, p. 2069. DOI: 10.1021/acs.jpcc.6b11528

    [40]

    X.T. Yuan, H.X. Ge, X.Y. Liu, X. Wang, W.G. Chen, W.J. Dong, and F.Q. Huang, Efficient catalyst of defective CeO2−x and few-layer carbon hybrid for oxygen reduction reaction, J. Alloys Compd., 688(2016), p. 613. DOI: 10.1016/j.jallcom.2016.07.060

    [41]

    C. Wei, S.N. Sun, D. Mandler, X. Wang, S.Z. Qiao, and Z.J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev., 48(2019), No. 9, p. 2518. DOI: 10.1039/C8CS00848E

    [42]

    Y.C. Zhao, L. Zhan, J.N. Tian, S.L. Nie, and Z. Ning, Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium, Electrochim. Acta, 56(2011), No. 5, p. 1967. DOI: 10.1016/j.electacta.2010.12.005

    [43]

    C.C. Ting, C.H. Chao, C.Y. Tsai, I.K. Cheng, and F.M. Pan, Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect, Appl. Surf. Sci., 416(2017), p. 365. DOI: 10.1016/j.apsusc.2017.04.156

    [44]

    F.W. Zhan, T. Bian, W.G. Zhao, H. Zhang, M.S. Jin, and D.R. Yang, Facile synthesis of Pd–Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation, CrystEngComm, 16(2014), No. 12, p. 2411. DOI: 10.1039/C3CE42362J

    [45]

    G.L. Bai, C. Liu, Z. Gao, B.Y. Lu, X.L. Tong, X.Y. Guo, and N.J. Yang, Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation, Small, 15(2019), No. 38, art. No. 1902951. DOI: 10.1002/smll.201902951

    [46]

    H.L. Chen, J.L. Duan, X.L. Zhang, Y.F. Zhang, C. Guo, L. Nie, and X.W. Liu, One step synthesis of Pt/CeO2–graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell, Mater. Lett., 126(2014), p. 9. DOI: 10.1016/j.matlet.2014.03.095

    [47]

    M.A. Scibioh, S.K. Kim, E.A. Cho, T.H. Lim, S.A. Hong, and H.Y. Ha, Pt–CeO2/C anode catalyst for direct methanol fuel cells, Appl. Catal. B, 84(2008), No. 3-4, p. 773. DOI: 10.1016/j.apcatb.2008.06.017

    [48]

    C.T. Campbell and C.H.F. Peden, Oxygen vacancies and catalysis on ceria surfaces, Science, 309(2005), No. 5735, p. 713. DOI: 10.1126/science.1113955

    [49]

    E. Mamontov, W. Dmowski, T. Egami, and C.C. Kao, Electronic excitation in a catalytic support oxide, CeO2, J. Phys. Chem. Solids, 61(2000), No. 3, p. 431. DOI: 10.1016/S0022-3697(99)00331-5

    [50]

    K. Yoon, Y. Yang, P. Lu, D.H. Wan, H.C. Peng, K.S. Masias, P.T. Fanson, C.T. Campbell, and Y.N. Xia, A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers, Angew. Chem. Int. Ed., 51(2012), No. 38, p. 9543. DOI: 10.1002/anie.201203755

    [51]

    A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.M. Leger, and C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes, J. Electroanal. Chem., 444(1998), No. 1, p. 41. DOI: 10.1016/S0022-0728(97)00558-5

    [52]

    M.-S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, and B. Makiabadi, Electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide–chitosan for methanol electrooxidation, J. Mater. Sci.: Mater. Electron., 28(2017), No. 17, p. 12373. DOI: 10.1007/s10854-017-7057-5

    [53]

    S. Ramani, S. Sarkar, V. Vemuri, and S.C. Peter, Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid, J. Mater. Chem. A, 5(2017), No. 23, p. 11572. DOI: 10.1039/C6TA06339J

    [54]

    J.J. Yang, Y.Y. Chu, L. Li, H.T. Wang, Z. Dai, and X.Y. Tan, Effects of calcination temperature and CeO2 contents on the performance of Pt/CeO2−CNTs hybrid nanotube catalysts for methanol oxidation, J. Appl. Electrochem., 46(2016), No. 3, p. 369. DOI: 10.1007/s10800-016-0931-7

Relative Articles

Chun-ming Ai, Ping-ping Sun, Ai-xiang Wu, Xun Chen, Chao Liu. Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-019-1735-7

View details

Eltefat Ahmadi, Ahmad Fauzi, Hashim Hussin, Norlia Baharun, Kamar Shah Ariffin, Sheikh Abdul Rezan. Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET) [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-017-1425-2

View details

Wen Yu, Qiong-yao Tang, Jiang-an Chen, Ti-chang Sun. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-016-1331-z

View details

Tu Hu, Xue-wei Lü, Chen-guang Bai, Gui-bao Qiu. Isothermal reduction of titanomagnetite concentrates containing coal [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-014-0875-z

View details

Saikat Samanta, Manik Chandra Goswami, Tapan Kumar Baidya, Siddhartha Mukherjee, Rajib Dey. Mineralogy and carbothermal reduction behaviour of vanadium-bearing titaniferous magnetite ore in Eastern India [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-013-0815-3

View details

Ai-min Chu, Ming-li Qin, Bao-rui Jia, Hui-feng Lu, Xuan-hui Qu. Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-013-0696-5

View details

Ali Rasooli, Mehdi Divandari, Hamid Reza Shahverdi, Mohammad Ali Boutorabi. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-012-0533-2

View details

Jinxiong Lu, Li Wang, Jiongming Zhang, Xinhua Wang. Computer recognition of slag property diagrams in ternary systems [J]. 矿物冶金与材料学报(英文版).

View details

Huiqing Tang, Zhancheng Guo, Xingmin Guo, Shengbi Zhang. Kinetics of Carbothermic Reduction of MnO2 and Catalytic Effect of La2O3 [J]. 矿物冶金与材料学报(英文版).

View details

/

返回文章
返回