Cite this article as:

Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li, and Bing Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp.1224-1232. https://dx.doi.org/10.1007/s12613-020-2076-2
Guo-qing Li, Pu-kang Wen, Chen-qiang Gao, Tian-yi Zhang, Jun-yang Hu, Yu-hao Zhang, Shi-you Guan, Qing-feng Li, and Bing Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp.1224-1232. https://dx.doi.org/10.1007/s12613-020-2076-2
引用本文 PDF XML SpringerLink

不同温度下CeO2预煅烧对甲醇氧化反应中Pt/CeO2–C电催化剂性能的影响

Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction

Abstract: Pt/CeO2–C catalysts with CeO2 pre-calcined at 300–600°C were synthesized by combining hydrothermal calcination and wet impregnation. The effects of the pre-calcined CeO2 on the performance of Pt/CeO2–C catalysts in methanol oxidation were investigated. The Pt/CeO2–C catalysts with pre-calcined CeO2 at 300–600°C showed an average particle size of 2.6–2.9 nm and exhibited better methanol electro-oxidation catalytic activity than the commercial Pt/C catalyst. In specific, the Pt/CeO2–C catalysts with pre-calcined CeO2 at 400°C displayed the highest electrochemical surface area value of 68.14 m2·g−1 and If/Ib ratio (the ratio of the forward scanning peak current density (If) and the backward scanning peak current density (Ib)) of 1.26, which are considerably larger than those (53.23 m2·g−1 and 0.79, respectively) of the commercial Pt/C catalyst, implying greatly enhanced CO tolerance.

 

/

返回文章
返回