留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 7
Jul.  2020

图(5)

数据统计

分享

计量
  • 文章访问数:  2345
  • HTML全文浏览量:  561
  • PDF下载量:  93
  • 被引次数: 0
Hong-liang Li, Wen-nan Xu, Fei-fei Jia, Jian-bo Li, Shao-xian Song, and Yuri Nahmad, Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 857-871. https://doi.org/10.1007/s12613-020-2078-0
Cite this article as:
Hong-liang Li, Wen-nan Xu, Fei-fei Jia, Jian-bo Li, Shao-xian Song, and Yuri Nahmad, Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review, Int. J. Miner. Metall. Mater., 27(2020), No. 7, pp. 857-871. https://doi.org/10.1007/s12613-020-2078-0
引用本文 PDF XML SpringerLink
特约综述

水溶液中矿物表面水化与荷电之间关系评述

  • Invited Review

    Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review

    + Author Affiliations
    • Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions. These properties usually coexist and interact with each other. The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental, theoretical, and molecular dynamics simulation studies. The factors affecting the adsorption behavior of ions and water molecules, such as ion concentration, ion hydration radius and valence, and surface properties, are discussed. For example, the hydration and adsorption states completely differ between monovalent and divalent ions. For ions of the same valence, the effect of surface charge on the hydration force follows the Hofmeister adsorption series. Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations. Meanwhile, the ion correlations in high-concentration electrolyte systems become long range. The interfacial water structure largely depends on surface chemistry. The hydration layer between different surfaces shows large qualitative differences.

    • loading
    • [1]
      E.I. Benítez, D.B. Genovese, and J.E. Lozano, Effect of pH and ionic strength on apple juice turbidity: Application of the extended DLVO theory, Food Hydrocolloids, 21(2007), No. 1, p. 100. doi: 10.1016/j.foodhyd.2006.02.007
      [2]
      C.F. Liu, F.F. Min, L.Y. Liu, and J. Chen, Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study, Chem. Phys. Lett., 727(2019), p. 31. doi: 10.1016/j.cplett.2019.04.045
      [3]
      F.F. Min, C.I. Peng, and S.X. Song, Hydration layers on clay mineral surfaces in aqueous solutions: A review, Arch. Min. Sci., 59(2014), No. 2, p. 489.
      [4]
      R.M. Pashley, DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties, J. Colloid Interface Sci., 83(1981), No. 2, p. 531. doi: 10.1016/0021-9797(81)90348-9
      [5]
      G.A. Parks, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chem. Rev., 65(1965), No. 2, p. 177. doi: 10.1021/cr60234a002
      [6]
      R.M. Pashley, Hydration forces between mica surfaces in electrolyte solutions, Adv. Colloid Interface Sci., 16(1982), No. 1, p. 57. doi: 10.1016/0001-8686(82)85006-9
      [7]
      R.M. Pashley and J.N. Israelachvili, DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions, J. Colloid Interface Sci., 97(1984), No. 2, p. 446. doi: 10.1016/0021-9797(84)90316-3
      [8]
      J.P. Chapel, Electrolyte species dependent hydration forces between silica surfaces, Langmuir, 10(1994), No. 11, p. 4237. doi: 10.1021/la00023a053
      [9]
      A. Chandra, Dynamics of electrical double layer formation at a charged solid surface, J. Mol. Struct., 430(1998), p. 105. doi: 10.1016/S0166-1280(98)90225-1
      [10]
      K.D. Collins and M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces, Q. Rev. Biophys., 18(1985), No. 4, p. 323. doi: 10.1017/S0033583500005369
      [11]
      M.M. Hatlo, R. van Roij, and L. Lue, The electric double layer at high surface potentials: The influence of excess ion polarizability, Europhys. Lett., 97(2012), No. 2, art. No. 28010. doi: 10.1209/0295-5075/97/28010
      [12]
      M.E. Fleharty, F. Van Swol, and D.N. Petsev, Solvent role in the formation of electric double layers with surface charge regulation: A bystander or a key participant?, Phys. Rev. Lett., 116(2016), No. 4, art. No. 048301. doi: 10.1103/PhysRevLett.116.048301
      [13]
      S. Dewan, M.S. Yeganeh, and E. Borguet, Experimental correlation between interfacial water structure and mineral reactivity, J. Phys. Chem. Lett., 4(2013), No. 11, p. 1977. doi: 10.1021/jz4007417
      [14]
      M. Holovko, M. Druchok, and T. Bryk, A molecular dynamics study of the hydrated–hydrolyzed structure of multivalent cations based on the model of primitive cation, J. Mol. Liq., 131-132(2007), p. 65. doi: 10.1016/j.molliq.2006.08.029
      [15]
      Q.Y. Hu, C. Weber, H.W. Cheng, F.U. Renner, and M. Valtiner, Anion layering and steric hydration repulsion on positively charged surfaces in aqueous electrolytes, ChemPhysChem, 18(2017), No. 21, p. 3056. doi: 10.1002/cphc.201700865
      [16]
      R. Scheu, B.M. Rankin, Y.X. Chen, K.C. Jena, D. Ben-Amotz, and S. Roke, Charge asymmetry at aqueous hydrophobic interfaces and hydration shells, Angew. Chem. Int. Ed., 53(2014), No. 36, p. 9560. doi: 10.1002/anie.201310266
      [17]
      C.L. Peng, F.F. Min, L.Y. Liu, and J. Chen, The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: A DFT study, Surf. Interface Anal., 49(2017), No. 4, p. 267. doi: 10.1002/sia.6128
      [18]
      C.F. Liu, F.F. Min, L.Y. Liu, and J. Chen, Density functional theory study of water molecule adsorption on the α-quartz (001) surface with and without the presence of Na+, Mg2+, and Ca2+, ACS Omega, 4(2019), No. 7, p. 12711. doi: 10.1021/acsomega.9b01570
      [19]
      C.J. Van Oss, R.J. Good, and M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces, J. Colloid Interface Sci., 111(1986), No. 2, p. 378. doi: 10.1016/0021-9797(86)90041-X
      [20]
      Q. Du, E. Freysz, and Y.R. Shen, Vibrational spectra of water molecules at quartz/water interfaces, Phys. Rev. Lett., 72(1994), No. 2, p. 238. doi: 10.1103/PhysRevLett.72.238
      [21]
      S.X. Song, C.S. Peng, M.A. Gonzalez-Olivares, A. Lopez-Valdivieso, and T. Fort, Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement, J. Colloid Interface Sci., 287(2005), No. 1, p. 114. doi: 10.1016/j.jcis.2005.01.066
      [22]
      A. Chatterjee, T. Iwasaki, T. Ebina, and A. Miyamoto, A DFT study on clay–cation–water interaction in montmorillonite and beidellite, Comput. Mater. Sci., 14(1999), No. 1-4, p. 119. doi: 10.1016/S0927-0256(98)00083-4
      [23]
      C.L. Peng, F.F. Min, L.Y. Liu, and J. Chen, A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface, Appl. Surf. Sci., 387(2016), p. 308. doi: 10.1016/j.apsusc.2016.06.079
      [24]
      H. Yi, F.F. Jia, Y.L. Zhao, W. Wang, S.X. Song, H.Q. Li, and C. Liu, Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: A molecular dynamic study, Appl. Surf. Sci., 459(2018), p. 148. doi: 10.1016/j.apsusc.2018.07.216
      [25]
      H.L. Li, S.X. Song, Y.L. Zhao, Y. Nahmad, and T.X. Chen, Comparison study on the effect of interlayer hydration and solvation on montmorillonite delamination, JOM, 69(2017), No. 2, p. 254. doi: 10.1007/s11837-016-2162-0
      [26]
      D.F. Parsons and B.W. Ninham, Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration, Colloids Surf. A, 383(2011), No. 1-3, p. 2. doi: 10.1016/j.colsurfa.2010.12.025
      [27]
      J.I. Kilpatrick, S.H. Loh, and S.P. Jarvis, Directly probing the effects of ions on hydration forces at interfaces, J. Am. Chem. Soc., 135(2013), No. 7, p. 2628. doi: 10.1021/ja310255s
      [28]
      F.F. Min, C.L. Peng, and L.Y. Liu, Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions, Powder Technol., 283(2015), p. 368. doi: 10.1016/j.powtec.2015.06.008
      [29]
      C.Y. Park, P.A. Fenter, K.L. Nagy, and N.C. Sturchio, Hydration and distribution of ions at the mica–water interface, Phys. Rev. Lett., 97(2006), No. 1, art. No. 016101. doi: 10.1103/PhysRevLett.97.016101
      [30]
      J. Morag, M. Dishon, and U. Sivan, The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the Hofmeister universality and its reversal, Langmuir, 29(2013), No. 21, p. 6317. doi: 10.1021/la400507n
      [31]
      Y.Z. Li, C. Zhang, Y.P. Jiang, T.J. Wang, and H.F. Wang, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination, 399(2016), p. 171. doi: 10.1016/j.desal.2016.09.011
      [32]
      D.F. Parsons and A. Salis, Hofmeister effects at low salt concentration due to surface charge transfer, Curr. Opin. Colloid Interface Sci., 23(2016), p. 41. doi: 10.1016/j.cocis.2016.05.005
      [33]
      S. Veeramasuneni, Y.H. Hu, M.R. Yalamanchili, and J.D. Miller, Interaction forces at high ionic strengths: The role of polar interfacial interactions, J. Colloid Interface Sci., 188(1997), No. 2, p. 473. doi: 10.1006/jcis.1997.4772
      [34]
      H.J. Butt, Electrostatic interaction in atomic force microscopy, Biophys. J., 60(1991), No. 4, p. 777. doi: 10.1016/S0006-3495(91)82112-9
      [35]
      A. Grabbe and R.G. Horn, Double-layer and hydration forces measured between silica sheets subjected to various surface treatments, J. Colloid Interface Sci., 157(1993), No. 2, p. 375. doi: 10.1006/jcis.1993.1199
      [36]
      Z. Zachariah, R.M. Espinosa-Marzal, and M.P. Heuberger, Ion specific hydration in nano-confined electrical double layers, J. Colloid Interface Sci, 506(2017), p. 263. doi: 10.1016/j.jcis.2017.07.039
      [37]
      T. Baimpos, B.R. Shrestha, S. Raman, and M. Valtiner, Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05–3 M Li+ and Cs+ electrolyte solutions, Langmuir, 30(2014), No. 15, p. 4322. doi: 10.1021/la500288w
      [38]
      P.F. Low, Influence of adsorbed water on exchangeable ion movement, Clays Clay Miner., 9(1960), No. 1, p. 219. doi: 10.1346/CCMN.1960.0090112
      [39]
      M. Manciu and E. Ruckenstein, Specific ion effects via ion hydration: I. Surface tension, Adv. Colloid Interface Sci., 105(2003), No. 1-3, p. 63. doi: 10.1016/S0001-8686(03)00018-6
      [40]
      H.H. Huang and E. Ruckenstein, Effect of hydration of ions on double-layer repulsion and the hofmeister series, J. Phys. Chem. Lett., 4(2013), No. 21, p. 3725. doi: 10.1021/jz401948w
      [41]
      S.J. Miklavic and B.W. Ninham, Competition for adsorption sites by hydrated ions, J. Colloid Interface Sci., 134(1990), No. 2, p. 305. doi: 10.1016/0021-9797(90)90140-J
      [42]
      P.M. Biesheuvel and M. van Soestbergen, Counterion volume effects in mixed electrical double layers, J. Colloid Interface Sci., 316(2007), No. 2, p. 490. doi: 10.1016/j.jcis.2007.08.006
      [43]
      H.J. Butt, Measuring local surface charge densities in electrolyte solutions with a scanning force microscope, Biophys. J., 63(1992), No. 2, p. 578. doi: 10.1016/S0006-3495(92)81601-6
      [44]
      N. Cuvillier and F. Rondelez, Breakdown of the Poisson–Boltzmann description for electrical double layers involving large multivalent ions, Thin Solid Films, 327-329(1998), p. 19. doi: 10.1016/S0040-6090(98)00579-3
      [45]
      J. Sotres, A. Lostao, C. Gómez-Moreno, and A.M. Baró, Jumping mode AFM imaging of biomolecules in the repulsive electrical double layer, Ultramicroscopy, 107(2007), No. 12, p. 1207. doi: 10.1016/j.ultramic.2007.01.020
      [46]
      W.F. Heinz and J.H. Hoh, Relative surface charge density mapping with the atomic force microscope, Biophys. J., 76(1999), No. 1, p. 528. doi: 10.1016/S0006-3495(99)77221-8
      [47]
      T. Hiemstra and W.H. Van Riemsdijk, On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides, J. Colloid Interface Sci., 301(2006), No. 1, p. 1. doi: 10.1016/j.jcis.2006.05.008
      [48]
      X.H. Yin, V. Gupta, H. Du, X.M. Wang, and J.D. Miller, Surface charge and wetting characteristics of layered silicate minerals, Adv. Colloid Interface Sci., 179-182(2012), p. 43. doi: 10.1016/j.cis.2012.06.004
      [49]
      J. Liu, L. Sandaklie-Nikolova, X.M. Wang, and J.D. Miller, Surface force measurements at kaolinite edge surfaces using atomic force microscopy, J. Colloid Interface Sci., 420(2014), p. 35. doi: 10.1016/j.jcis.2013.12.053
      [50]
      T.X. Chen, Y.L. Zhao, H.L. Li, J. Liu, and S.X. Song, Electrokinetic characteristics of calcined kaolinite in aqueous electrolytic solutions, Surf. Rev. Lett., 22(2015), No. 3, art. No. 1550041. doi: 10.1142/S0218625X15500419
      [51]
      P. Sinha, I. Szilagyi, F.J. Montes Ruiz-Cabello, P. Maroni, and M. Borkovec, Attractive forces between charged colloidal particles induced by multivalent ions revealed by confronting aggregation and direct force measurements, J. Phys. Chem. Lett., 4(2013), No. 4, p. 648. doi: 10.1021/jz4000609
      [52]
      A.W. Adamson, Physical Chemistry of Surfaces, John Wiley & Sons Inc., New York, 1990, p. 134.
      [53]
      B.V. Derjaguin and S.S. Dukhin, Theory of flotation of small and medium-size particles, Prog. Surf. Sci., 43(1993), No. 1-4, p. 241. doi: 10.1016/0079-6816(93)90034-S
      [54]
      D. Andelman, Electrostatic properties of membranes: the Poisson-Boltzmann theory, [in] R. Lipowsky and E. Sackmann, eds., Handbook of Biological Physics, Elsevier, Nederland, 1995, p. 603.
      [55]
      I. Borukhov, D. Andelman, and H. Orland, Adsorption of large ions from an electrolyte solution: A modified Poisson–Boltzmann equation, Electrochim. Acta, 46(2000), No. 2-3, p. 221. doi: 10.1016/S0013-4686(00)00576-4
      [56]
      X.M. Liu, H. Li, R. Li, and R. Tian, Analytical solutions of the nonlinear Poisson–Boltzmann equation in mixture of electrolytes, Surf. Sci., 607(2013), p. 197. doi: 10.1016/j.susc.2012.09.008
      [57]
      P.H. R. Alijó, F.W. Tavares, and E.C. Biscaia Jr, Double layer interaction between charged parallel plates using a modified Poisson–Boltzmann equation to include size effects and ion specificity, Colloids Surf. A, 412(2012), p. 29. doi: 10.1016/j.colsurfa.2012.07.008
      [58]
      D. Ben-Yaakov and D. Andelman, Revisiting the Poisson–Boltzmann theory: Charge surfaces, multivalent ions and inter-plate forces, Physica A, 389(2010), No. 15, p. 2956. doi: 10.1016/j.physa.2010.01.022
      [59]
      J.P. Hsu, H.Y. Yu, and S. Tseng, Approximate analytical expressions for the electrical potential between two planar, cylindrical, and spherical surfaces, J. Phys. Chem. B, 110(2006), No. 49, p. 25007. doi: 10.1021/jp062704m
      [60]
      J.P. Hsu and C.H. Huang, Electrical potentials of two identical planar, cylindrical, and spherical colloidal particles in a salt-free medium, J. Colloid Interface Sci., 348(2010), No. 2, p. 402. doi: 10.1016/j.jcis.2010.04.079
      [61]
      J. Stankovich and S.L. Carnie, Interactions between two spherical particles with nonuniform surface potentials: The linearized Poisson–Boltzmann theory, J. Colloid Interface Sci., 216(1999), No. 2, p. 329. doi: 10.1006/jcis.1999.6326
      [62]
      J.K. Wang, M.R. Wang, and Z.X. Li, Lattice evolution solution for the nonlinear Poisson–Boltzmann equation in confined domains, Commun. Nonlinear Sci. Numer. Simul., 13(2008), No. 3, p. 575. doi: 10.1016/j.cnsns.2006.06.002
      [63]
      L.C. Liu and I. Neretnieks, Homo-interaction between parallel plates at constant charge, Colloids Surf. A, 317(2008), No. 1-3, p. 636. doi: 10.1016/j.colsurfa.2007.11.055
      [64]
      R. Kjellander, T. Åkesson, B. Jönsson, and S. Marčelja, Double layer interactions in mono and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations, J. Chem. Phys., 97(1992), No. 2, p. 1424. doi: 10.1063/1.463218
      [65]
      S. Kewalramani, G.I. Guerrero-García, L.M. Moreau, J.W. Zwanikken, C.A. Mirkin, M.O. de La Cruz, and M.J. Bedzyk, Electrolyte-mediated assembly of charged nanoparticles, ACS Cent. Sci., 2(2016), No. 4, p. 219. doi: 10.1021/acscentsci.6b00023
      [66]
      G.I. Guerrero-García, E. González-Tovar, M. Lozada-Cassou, and F. de J. Guevara-Rodríguez, The electrical double layer for a fully asymmetric 895 electrolyte around a spherical colloid?: An integral equation study, J. Chem. Phys., 123(2005), No. 3, art. No. 034703. doi: 10.1063/1.1949168
      [67]
      G.I. Guerrero-García, E. González-Tovar, and M. Chávez-Páez, Simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: The case of big coions, Phys. Rev. E, 80(2009), No. 2, art. No. 021501. doi: 10.1103/PhysRevE.80.021501
      [68]
      G.I. Guerrero-García, E. González-Tovar, and M.O. de la Cruz, Effects of the ionic size-asymmetry around a charged nanoparticle: Unequal charge neutralization and electrostatic screening, Soft Matter, 6(2010), No. 9, p. 2056. doi: 10.1039/b924438g
      [69]
      G.I. Guerrero-García, E. González-tovar, and M.O. de la Cruz, Entropic effects in the electric double layer of model colloids with size-asymmetric 907 monovalent ions, J. Chem. Phys., 135(2011), No. 5, art. No. 054701. doi: 10.1063/1.3622046
      [70]
      G.I. Guerrero-García, P. González-Mozuelos, and M.O. de la Cruz, Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte, J. Chem. Phys., 135(2011), No. 16, art. No. 164705. doi: 10.1063/1.3656763
      [71]
      G.I. Guerrero-García and M.O. de la Cruz, Inversion of the electric field at the electrified liquid–liquid interface, J. Chem. Theory Comput., 9(2013), No. 1, p. 1. doi: 10.1021/ct300673m
      [72]
      G.I. Guerrero-García, Y.F. Jing, and M.O. de la Cruz, Enhancing and reversing the electricfield at the oil–water interface with size-asymmetric monovalent ions, Soft Matter, 9(2013), No. 26, p. 6046. doi: 10.1039/c3sm50753j
      [73]
      Z. Ovanesyan, B. Medasani, M.O. Fenley, G.I. Guerrero-García, M.O. de la Cruz, and M. Marucho, Excluded volume and ion–ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments, J. Chem. Phys., 141(2014), No. 22, art. No. 225103. doi: 10.1063/1.4902407
      [74]
      G.I. Guerrero-García, E. González-Tovar, M. Quesada-Pérez, and A. Martín-Molina, The non-dominance of counterions in charge asymmetric electrolytes: Non-monotonic precedence of the electrostatic screening and local inversion of the electric field by multivalent coions, Phys. Chem. Chem. Phys., 18(2016), No. 31, p. 21852. doi: 10.1039/C6CP03483G
      [75]
      G.I. Guerrero-García, P. Gonzalez-Mozuelos, and M.O. de la Cruz, Large counterions boost the solubility and renormalized charge of suspended nanoparticles, ACS Nano, 7(2013), No. 11, p. 9714. doi: 10.1021/nn404477b
      [76]
      G.I. Guerrero-García and M.O. de la Cruz, Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes, J. Phys. Chem. B, 118(2014), No. 29, p. 8854. doi: 10.1021/jp5045173
      [77]
      G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, J. Kłos, and S. Lamperski, Quantifying the thickness of the electrical double layer neutralizing a planar electrode: The capacitive compactness, Phys. Chem. Chem. Phys., 20(2018), No. 1, p. 262. doi: 10.1039/C7CP05433E
      [78]
      G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, and T. Wei, Expansion and shrinkage of the electrical double layer in charge-asymmetric electrolytes: A non-linear Poisson–Boltzmann description, J. Mol. Liq., 277(2019), p. 104. doi: 10.1016/j.molliq.2018.11.163
      [79]
      E. González-Tovar, F. Jiménez-Ángeles, R. Messina, and M. Lozada-Cassou, A new correlation effect in the Helmholtz and surface potentials of the electrical double layer, J. Chem. Phys., 120(2004), No. 20, p. 9782. doi: 10.1063/1.1710861
      [80]
      C.L. Moraila-Martínez, G.I. Guerrero-García, M. Chávez-Páez, and E. González-Tovar, An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid, J. Chem. Phys., 148(2018), No. 15, art. No. 154703. doi: 10.1063/1.5024553
      [81]
      C.L. Peng, Y.H. Zhong, G.S. Wang, F.F. Min, and L. Qin, Atomic-level insights into the adsorption of rare earth $ {\rm{Y(OH)}}_{3 - n}^{n + } $ \normalsize (n = 1–3) ions on kaolinite surface, Appl. Surf. Sci., 469(2019), p. 357. doi: 10.1016/j.apsusc.2018.11.022
      [82]
      H.L. Li, S.X. Song, X.S. Dong, F.F. Min, Y.L. Zhao, C.L. Peng, and Y. Nahmad, Molecular dynamics study of crystalline swelling of montmorillonite as affected by interlayer cation hydration, JOM, 70(2018), No. 4, p. 479. doi: 10.1007/s11837-017-2666-2
      [83]
      A. Torres, R. van Roij, and G. Téllez, Finite thickness and charge relaxation in double-layer interactions, J. Colloid Interface Sci., 301(2006), No. 1, p. 176. doi: 10.1016/j.jcis.2006.04.058
      [84]
      V.N. Paunov, R.I. Dimova, P.A. Kralchevsky, G. Broze, and A. Mehreteab, The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects, J. Colloid Interface Sci., 182(1996), No. 1, p. 239. doi: 10.1006/jcis.1996.0456
      [85]
      J.J. Adler, Y.I. Rabinovich, and B.M. Moudgil, Origins of the non-DLVO force between glass surfaces in aqueous solution, J. Colloid Interface Sci., 237(2001), No. 2, p. 249. doi: 10.1006/jcis.2001.7466
      [86]
      H.H. Liu, J. Lanphere, S. Walker, and Y. Cohen, Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation, Nanotechnology, 26(2015), No. 4, art. No. 045708. doi: 10.1088/0957-4484/26/4/045708
      [87]
      S. Veeramasuneni, M.R. Yalamanchili, and J.D. Miller, Interactions between dissimilar surfaces in high ionic strength solutions as determined by atomic force microscopy, Colloids Surf. A, 131(1998), No. 1-3, p. 77. doi: 10.1016/S0927-7757(96)03929-5
      [88]
      J.M. Duan, Interfacial forces between silica surfaces measured by atomic force microscopy, J. Environ. Sci., 21(2009), No. 1, p. 30. doi: 10.1016/S1001-0742(09)60007-3
      [89]
      N. Schelero, G. Hedicke, P. Linse, and R.V. Klitzing, Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate, J. Phys. Chem. B, 114(2010), No. 47, p. 15523. doi: 10.1021/jp1070488
      [90]
      K.J. Mysels and M.N. Jones, Direct measurement of the variation of double-layer repulsion with distance, Discuss. Faraday Soc., 42(1966), p. 42. doi: 10.1039/df9664200042
      [91]
      A. Sheludko, Thin liquid films, Adv. Colloid Interface Sci, 1(1967), No. 4, p. 391. doi: 10.1016/0001-8686(67)85001-2
      [92]
      V. Bergeron and C.J. Radke, Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films, Langmuir, 8(1992), No. 12, p. 3020. doi: 10.1021/la00048a028
      [93]
      P.A. Kralchevsky, K.D. Danov, and E.S. Basheva, Hydration force due to the reduced screening of the electrostatic repulsion in few-nanometer-thick films, Curr. Opin. Colloid Interface Sci., 16(2011), No. 6, p. 517. doi: 10.1016/j.cocis.2011.04.005
      [94]
      D.R. Tadjiev, R.J. Hand, and P. Zeng, Comparison of glass hydration layer thickness measured by transmission electron microscopy and nanoindentation, Mater. Lett., 64(2010), No. 9, p. 1041. doi: 10.1016/j.matlet.2010.02.004
      [95]
      Y.L. Zhao, H. Yi, F.F. Jia, H.L. Li, C.S. Peng, and S.X. Song, A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water, Powder Technol., 306(2017), p. 74. doi: 10.1016/j.powtec.2016.10.045
      [96]
      J.P. Lowe, D.J. Lowe, A.P.W. Hodder, and A.T. Wilson, A tritium-exchange method for obsidian hydration shell measurement, Chem. Geol., 46(1984), No. 4, p. 351. doi: 10.1016/0009-2541(84)90177-3
      [97]
      M.S. Yeganeh, S.M. Dougal, and H.S. Pink, Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface, Phys. Rev. Lett., 83(1999), No. 6, p. 1179. doi: 10.1103/PhysRevLett.83.1179
      [98]
      V. Ostroverkhov, G.A. Waychunas, and Y.R. Shen, Vibrational spectra of water at water/α-quartz (0001) interface, Chem. Phys. Lett., 386(2004), No. 1-3, p. 144. doi: 10.1016/j.cplett.2004.01.047
      [99]
      A.J. Hopkins, C.L. McFearin, and G.L. Richmond, Investigations of the solid–aqueous interface with vibrational sum-frequency spectroscopy, Curr. Opin. Solid State Mater. Sci., 9(2005), No. 1-2, p. 19. doi: 10.1016/j.cossms.2006.04.001
      [100]
      K. Miyazawa, N. Kobayashi, M. Watkins, A.L. Shluger, K.I. Amanod, and T. Fukuma, A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy, Nanoscale, 8(2016), No. 13, p. 7334. doi: 10.1039/C5NR08092D
      [101]
      R. Ho, J.Y. Yuan, and Z.F. Shao, Hydration force in the atomic force microscope: A computational study, Biophys. J., 75(1998), No. 2, p. 1076. doi: 10.1016/S0006-3495(98)77597-6
      [102]
      K. Kobayashi, N. Oyabu, K. Kimura, S. Ido, K. Suzuki, T. Imai, K. Tagami, M. Tsukada, and H. Yamada, Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy, J. Chem. Phys., 138(2013), No. 18, art. No. 184704. doi: 10.1063/1.4803742
      [103]
      H. Yi, X. Zhang, Y.L. Zhao, L.Y. Liu, and S.X. Song, Molecular dynamics simulations of hydration shell on montmorillonite (001) in water, Surf. Interface Anal., 48(2016), No. 9, p. 976. doi: 10.1002/sia.6000
      [104]
      J.W. Wang, A.G. Kalinichev, and R.J. Kirkpatrick, Molecular modeling of water structure in nano-pores between brucite (001) surfaces, Geochimi. Cosmochim. Acta, 68(2004), No. 16, p. 3351. doi: 10.1016/j.gca.2004.02.016
      [105]
      D.R. Martin and D.V. Matyushov, Hydration shells of proteins probed by depolarized light scattering and dielectric spectroscopy: Orientational structure is significant, positional structure is not, J. Chem. Phys, 141(2014), No. 22, art. No. 22D501. doi: 10.1063/1.4895544
      [106]
      T.D. Perry, R.T. Cygan, and R. Mitchell, Molecular models of a hydrated calcite mineral surface, Geochim. Cosmochim. Acta, 71(2007), No. 24, p. 5876. doi: 10.1016/j.gca.2007.08.030
      [107]
      Y.S. Leng, Hydration force between mica surfaces in aqueous KCl electrolyte solution, Langmuir, 28(2012), No. 12, p. 5339. doi: 10.1021/la204603y
      [108]
      J. Chen, F.F. Min, L.Y. Liu, and C.F. Liu, Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations, Appl. Surf. Sci., 476(2019), p. 6. doi: 10.1016/j.apsusc.2019.01.081
      [109]
      L. Duponchel, S. Laurette, B. Hatirnaz, A. Treizebre, F. Affouard, and B. Bocquet, Terahertz microfluidic sensor for in situ exploration of hydration shell of molecules, Chemom. Intell. Lab. Syst., 123(2013), p. 28. doi: 10.1016/j.chemolab.2013.01.009
      [110]
      I.C. Bourg and G. Sposito, Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl–CaCl2) solutions, J. Colloid Interface Sci., 360(2011), No. 2, p. 701. doi: 10.1016/j.jcis.2011.04.063
      [111]
      D.J. Bonthuis and R.R. Netz, Beyond the continuum: How molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces, J. Phys. Chem. B, 117(2013), No. 39, p. 11397. doi: 10.1021/jp402482q
      [112]
      T. López-León, M.J. Santander-Ortega, J.L. Ortega-Vinuesa, and D.L. Bastos-González, Hofmeister effects in colloidal systems: Influence of the surface nature, J. Phys. Chem. C, 112(2008), No. 41, p. 16060. doi: 10.1021/jp803796a
      [113]
      E.A. Leed and C.G. Pantano, Computer modeling of water adsorption on silica and silicate glass fracture surfaces, J. Non-Cryst. Solids, 325(2003), No. 1-3, p. 48. doi: 10.1016/S0022-3093(03)00361-2
      [114]
      C.D.F. Honig and W.A. Ducker, No-slip hydrodynamic boundary condition for hydrophilic particles, Phys. Rev. Lett., 98(2007), No. 2, art. No. 028305. doi: 10.1103/PhysRevLett.98.028305
      [115]
      L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, J. Chem. Phys., 125(2006), No. 20, art. No. 204716. doi: 10.1063/1.2397677
      [116]
      C. Sendner, D. Horinek, L. Bocquet, and R.R. Netz, Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion, Langmuir, 25(2009), No. 18, p. 10768. doi: 10.1021/la901314b
      [117]
      L.M. Alarcón, D.C. Malaspina, E.P. Schulz, M.A. Frechero, and G.A. Appignanesi, Structure and orientation of water molecules at model hydrophobic surfaces with curvature: From graphene sheets to carbon nanotubes and fullerenes, Chem. Phys., 388(2011), No. 1-3, p. 47. doi: 10.1016/j.chemphys.2011.07.019
      [118]
      G.D. Smith, J.E. Swain, and C.L. Bormann, Microfluidics for gametes, embryos, and embryonic stem cells, Semin. Reprod. Med., 29(2011), No. 1, p. 5. doi: 10.1055/s-0030-1268699
      [119]
      Y.I. Chang and P.K. Chang, The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae—Application of the extended DLVO theory, Colloids Surf. A, 211(2002), No. 1, p. 67. doi: 10.1016/S0927-7757(02)00238-8
      [120]
      J.J. Valle-Delgado, J.A. Molina-Bolívar, F. Galisteo-González, and M.J. Gálvez-Ruiz, Evidence of hydration forces between proteins, Curr. Opin. Colloid Interface Sci., 16(2011), No. 6, p. 572. doi: 10.1016/j.cocis.2011.04.004
      [121]
      A. Bhattacharjee, A.B. Pribil, B.R. Randolf, B.M. Rode, and T.S. Hofer, Hydration of Mg2+ and its influence on the water hydrogen bonding network via ab initio QMCF MD, Chem. Phys. Lett., 536(2012), p. 39. doi: 10.1016/j.cplett.2012.03.049
      [122]
      S.J. Suresh, K. Kapoor, S. Talwar, and A. Rastogi, Internal structure of water around cations, J. Mol. Liq., 174(2012), p. 135. doi: 10.1016/j.molliq.2012.07.021
      [123]
      C. Kritayakornupong, K. Plankensteiner, and B.M. Rode, Dynamics in the hydration shell of Hg2+ ion: Classical and ab initio QM/MM molecular dynamics simulations, Chem. Phys. Lett., 371(2003), No. 3-4, p. 438. doi: 10.1016/S0009-2614(03)00301-4
      [124]
      A. Tongraar and B.M. Rode, Dynamical properties of water molecules in the hydration shells of Na+ and K+: Ab initio QM/MM molecular dynamics simulations, Chem. Phys. Lett., 385(2004), No. 5-6, p. 378. doi: 10.1016/j.cplett.2004.01.010
      [125]
      L. Gierst, L. Vandenberghen, E. Nicolas, and A. Fraboni, Ion pairing mechanisms in electrode processes, J. Electrochem. Soc., 113(1966), No. 10, p. 1025. doi: 10.1149/1.2423746
      [126]
      K.D. Collins, Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process, Methods, 34(2004), No. 3, p. 300. doi: 10.1016/j.ymeth.2004.03.021
      [127]
      K.D. Collins, Charge density-dependent strength of hydration and biological structure, Biophys. J., 72(1997), No. 1, p. 65. doi: 10.1016/S0006-3495(97)78647-8
      [128]
      S. Adapa, D.R. Swamy, S. Kancharla, S. Pradhan, and A. Malani, Role of mono- and divalent surface cations on the structure and adsorption behavior of water on mica surface, Langmuir, 34(2018), No. 48, p. 14472. doi: 10.1021/acs.langmuir.8b01128

    Catalog


    • /

      返回文章
      返回