留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 10
Oct.  2020

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2800
  • HTML全文浏览量:  669
  • PDF下载量:  67
  • 被引次数: 0
Min Zhang, Jin-xiong Hou, Hui-jun Yang, Ya-qin Tan, Xue-jiao Wang, Xiao-hui Shi, Rui-peng Guo,  and Jun-wei Qiao, Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1341-1346. https://doi.org/10.1007/s12613-020-2084-2
Cite this article as:
Min Zhang, Jin-xiong Hou, Hui-jun Yang, Ya-qin Tan, Xue-jiao Wang, Xiao-hui Shi, Rui-peng Guo,  and Jun-wei Qiao, Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, pp. 1341-1346. https://doi.org/10.1007/s12613-020-2084-2
引用本文 PDF XML SpringerLink
研究论文

Al0.6CoCrFeNi双相高熵合金的拉伸强度预

  • Research Article

    Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys

    + Author Affiliations
    • The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys (HEAs) subjected to cold rolling was investigated. The homogenized Al0.6CoCrFeNi alloys consisted of face-centered-cubic and body-centered-cubic phases, presenting similar mechanical behavior as the as-cast state. The yield and tensile strengths of the alloys could be dramatically enhanced to ~1205 MPa and ~1318 MPa after 50% rolling reduction, respectively. A power-law relationship was discovered between the strain-hardening exponent and rolling reduction. The tensile strengths of this dual-phase HEA with different cold rolling treatments were predicted, mainly based on the Hollomon relationship, by the strain-hardening exponent, and showed good agreement with the experimental results.

    • loading
    • [1]
      I. Toda-Caraballo, A general formulation for solid solution hardening effect in multicomponent alloys, Scripta Mater., 127(2017), p. 113. doi: 10.1016/j.scriptamat.2016.09.009
      [2]
      X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
      [3]
      Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534. doi: 10.1002/adem.200700240
      [4]
      H.Y. Yasuda, H. Miyamoto, K. Cho, and T. Nagase, Formation of ultrafine-grained microstructure in Al0.3CoCrFeNi high entropy alloys with grain boundary precipitates, Mater. Lett., 199(2017), p. 120. doi: 10.1016/j.matlet.2017.04.072
      [5]
      M. Klimova, N. Stepanov, D. Shaysultanov, R. Chernichenko, N. Yurchenko, V. Sanin, and S. Zherebtsov, Microstructure and mechanical properties evolution of the Al, C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling, Materials, 11(2017), No. 1, p. 53. doi: 10.3390/ma11010053
      [6]
      B. Jia, X.J. Liu, H. Wang, Y. Wu, and Z.P. Lu, Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion, Sci. China Technol. Sci., 61(2018), No. 2, p. 179. doi: 10.1007/s11431-017-9115-5
      [7]
      J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
      [8]
      H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678. doi: 10.1002/adma.201701678
      [9]
      J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.-J. Lee, and H.S. Kim, Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures, Acta Mater., 161(2018), p. 388. doi: 10.1016/j.actamat.2018.09.057
      [10]
      M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scripta Mater., 72-73(2014), p. 5. doi: 10.1016/j.scriptamat.2013.09.030
      [11]
      Z.M. Li and D. Raabe, Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties, JOM, 69(2017), No. 11, p. 2099. doi: 10.1007/s11837-017-2540-2
      [12]
      Z.M. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep., 7(2017), art. No. 40704. doi: 10.1038/srep40704
      [13]
      Z.M. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Mater., 131(2017), p. 323. doi: 10.1016/j.actamat.2017.03.069
      [14]
      C. Zhang, C.Y. Zhu, T. Harrington, and K. Vecchio, Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength–ductility synergy, Scripta Mater., 154(2018), p. 78. doi: 10.1016/j.scriptamat.2018.05.020
      [15]
      T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362(2018), No. 6417, p. 933. doi: 10.1126/science.aas8815
      [16]
      B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, and J.W. Qiao, A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature, J. Alloys Compd., 827(2020), art. No. 153981. doi: 10.1016/j.jallcom.2020.153981
      [17]
      J.X. Hou, M. Zhang, S.G. Ma, P.K. Liaw, Y. Zhang, and J.W. Qiao, Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling, Mater. Sci. Eng. A, 707(2017), p. 593. doi: 10.1016/j.msea.2017.09.089
      [18]
      Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M. Ziomek-Moroz, and J.W. Qiao, Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy, Mater. Sci. Eng. A, 645(2015), p. 163. doi: 10.1016/j.msea.2015.07.088
      [19]
      Z.W. Wang and I. Baker, Effects of annealing and thermo-mechanical treatment on the microstructures and mechanical properties of a carbon-doped FeNiMnAl multi-component alloy, Mater. Sci. Eng. A, 693(2017), p. 101. doi: 10.1016/j.msea.2017.03.099
      [20]
      J.X. Hou, X.H. Shi, J.W. Qiao, Y. Zhang, P.K. Liaw, and Y.C. Wu, Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys, Mater. Des., 180(2019), art. No. 107910. doi: 10.1016/j.matdes.2019.107910
      [21]
      P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw, Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489. doi: 10.1038/s41467-019-08460-2
      [22]
      L. Wang, J.W. Qiao, S.G. Ma, Z.M. Jiao, T.W. Zhang, G. Chen, D. Zhao, Y. Zhang, and Z.H. Wang, Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading, Mater. Sci. Eng. A, 727(2018), p. 208. doi: 10.1016/j.msea.2018.05.001
      [23]
      J. Yang, J.W. Qiao, S.G. Ma, G.Y. Wu, D. Zhao, and Z.H. Wang, Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms, J. Alloys Compd., 795(2019), p. 269. doi: 10.1016/j.jallcom.2019.04.333
      [24]
      S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw, Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy, Mater. Res. Lett., 5(2017), No. 4, p. 276. doi: 10.1080/21663831.2016.1257514
      [25]
      W. Abuzaid and H. Sehitoglu, Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 720(2018), p. 238. doi: 10.1016/j.msea.2018.02.044
      [26]
      A. Takeuchi and A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans. JIM, 41(2000), No. 11, p. 1372. doi: 10.2320/matertrans1989.41.1372
      [27]
      J.H. Hollomon, Tensile deformation, Trans. AIME, 162(1945), p. 268.
      [28]
      Z.H. Stachurski, Mechanical behavior of materials, Mater. Today, 12(2009), No. 3, p. 44.
      [29]
      W.D. Callister and D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd ed., John Wiley & Sons, Inc., New York, 2008, p. 260.
      [30]
      A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling, Acta Mater., 50(2002), No. 18, p. 4461. doi: 10.1016/S1359-6454(02)00253-7
      [31]
      M. Yang, The application of stress strain curve and strain-hardening exponent in plastic working, Mod. Mach., 2013, No. 4, p. 20.
      [32]
      Z.P. Zhang, W.Z. Zhao, Q. Sun, and C.W. Li, Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials, J. Mater. Eng. Perform., 15(2006), No. 1, p. 19. doi: 10.1361/10599490524057
      [33]
      Z.P. Zhang, W.H. Wu, D.L. Chen, Q. Sun, and W.Z. Zhao, New formula relating the yield stress–strain with the strength coefficient and the strain-hardening exponent, J. Mater. Eng. Perform., 13(2004), No. 4, p. 509. doi: 10.1361/10599490420070

    Catalog


    • /

      返回文章
      返回