留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 3
Mar.  2021

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  3573
  • HTML全文浏览量:  908
  • PDF下载量:  115
  • 被引次数: 0
Behrouz Bagheri, Mahmoud Abbasi,  and Amin Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 450-461. https://doi.org/10.1007/s12613-020-2085-1
Cite this article as:
Behrouz Bagheri, Mahmoud Abbasi,  and Amin Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 450-461. https://doi.org/10.1007/s12613-020-2085-1
引用本文 PDF XML SpringerLink
研究论文

搅拌摩擦焊、搅拌振动摩擦焊和钨极惰性气体焊接AA6061-T6接头的组织和力学特性对比研究

  • Research Article

    Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study

    + Author Affiliations
    • This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding (FSW), friction stir vibration welding (FSVW), and tungsten inert gas welding (TIG). FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW. The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG. In addition, the weld region grains for FSVW were finer compared with those for FSW. Results also showed that the strength, hardness, and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG. The vibration during FSW enhanced dynamic recrystallization, which led to the development of finer grains. The weld efficiency of FSVW was approximately 81%, whereas those of FSW and TIG were approximately 74% and 67%, respectively.

    • loading
    • [1]
      D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, and T. Epicier, Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2718. doi: 10.1016/j.msea.2010.12.011
      [2]
      W. Lucas, TIG and Plasma Welding: Process Techniques, Recommended Practices and Applications, Woodhead Publishing, Cambridge, 1990.
      [3]
      M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel–copper joints, J. Mech. Sci. Technol., 31(2017), No. 3, p. 1135. doi: 10.1007/s12206-016-1217-z
      [4]
      M. Abbasi, A. Abdollahzadeh, H. Omidvar, B. Bagheri, and M. Rezaei, Incorporation of SiC particles in FS welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance, Int. J. Mater. Res., 107(2016), No. 6, p. 566. doi: 10.3139/146.111369
      [5]
      H. Mostaan, M. Safari, and A. Bakhtiari, Micro friction stir lap welding of AISI 430 ferritic stainless steel: A study on the mechanical properties, microstructure, texture and magnetic properties, Metall. Res. Technol, 115(2018), No. 3, art. No. 307. doi: 10.1051/metal/2018003
      [6]
      A. Abdollahzadeh, A. Shokuhfar, H. Omidvar, J.M. Cabrera, A. Solonin, A. Ostovari, and M. Abbasi, Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds, Proc. Inst. Mech. Eng. Part L:J. Mater:Des. Appl., 233(2019), No. 5, p. 831.
      [7]
      A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, and H. Omidvar, In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy, J. Mater. Proc. Technol., 263(2019), p. 296. doi: 10.1016/j.jmatprotec.2018.08.025
      [8]
      A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P Zhilyaev, and H. Omidvar, The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Processes, 34(2018), p. 18. doi: 10.1016/j.jmapro.2018.05.029
      [9]
      T.G. Santos, R.M. Miranda, and P. Vilaça, Friction stir welding by electrical Joule effect, J. Mater. Proc. Technol., 214(2014), No. 10, p. 2127. doi: 10.1016/j.jmatprotec.2014.03.012
      [10]
      X. Liu, S.H. Lan, and J. Ni, Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel, J. Mater. Proc. Technol., 219(2015), p. 112. doi: 10.1016/j.jmatprotec.2014.12.002
      [11]
      M.O. Terje, K.A. Ove, and G. Øystein, Modified Friction Stir Welding, International Patent, Appl. WO99039861, 1999.
      [12]
      K. Gabriel, Improved Process and Apparatus for Friction Stir Welding, International Patent, Appl. WO02074479, 2002.
      [13]
      S.L. Campanelli, G. Casalino, C. Casavola, and V. Moramarco, Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy, Materials, 6(2013), No. 12, p. 5923. doi: 10.3390/ma6125923
      [14]
      F. Blaha and B. Langenecker, Tensile deformation of zinc crystal under ultrasonic vibration, Naturwissenschaften, 42(1955), No. 556, p. 1.
      [15]
      K. Park, G.Y. Kim, and J. Ni, Design and analysis of ultrasonic assisted friction stir welding, [in] ASME 2007 International Mechanical Engineering Congress and Exposition, Seattle, Washington, 2007, p. 731.
      [16]
      Y. Liu and S. Lu, Effects of ultrasonic vibration on the welding process of friction stir welding, Mater. Sci. Forum, 850(2016), p. 710. doi: 10.4028/www.scientific.net/MSF.850.710
      [17]
      H.K. Ma, D.Q. He, and J.S. Liu, Ultrasonically assisted friction stir welding of aluminum alloy 6061, Sci. Technol. Weld. Joining, 20(2015), No. 3, p. 216. doi: 10.1179/1362171814Y.0000000275
      [18]
      S. Amini and M.R. Amiri, Study of ultrasonic vibrations’ effect on friction stir welding, Int. J. Adv. Manuf. Technol., 73(2014), No. 1-4, p. 127. doi: 10.1007/s00170-014-5806-7
      [19]
      G.K. Padhy, C.S. Wu, and S. Gao, Auxiliary energy assisted friction stir welding – status review, Sci. Technol. Weld. Joining, 20(2015), No. 8, p. 631. doi: 10.1179/1362171815Y.0000000048
      [20]
      X.C. Liu and C.S. Wu, Experimental study on ultrasonic vibration enhanced friction stir welding, [in] H. Fujii, ed., Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, 2013, p. 151.
      [21]
      G.K. Padhy, C.S. Wu, and S. Gao, Subgrain formation in ultrasonic enhanced friction stir welding of aluminium alloy, Mater. Lett., 183(2016), p. 34. doi: 10.1016/j.matlet.2016.07.033
      [22]
      A. Siddiq and T.E. Sayed, Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations, Ultrasonics, 52(2012), No. 4, p. 521. doi: 10.1016/j.ultras.2011.11.004
      [23]
      L. Shi, C.S. Wu, and X.C. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, J. Mater. Process. Technol., 222(2015), p. 91. doi: 10.1016/j.jmatprotec.2015.03.002
      [24]
      M. Rahmi and M. Abbasi, Friction stir vibration welding process: Modified version of friction stir welding process, Int. J. Adv. Manuf. Technol., 90(2017), No. 1-4, p. 141. doi: 10.1007/s00170-016-9383-9
      [25]
      S. Fouladi and M. Abbasi, The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint, J. Mater. Process. Technol., 243(2017), p. 23. doi: 10.1016/j.jmatprotec.2016.12.005
      [26]
      ASTM International, ASTM E3-11: Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, 2017.
      [27]
      ASTM International, ASTM E112-13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, 2013.
      [28]
      ASTM International, ASTM E8/E8M-16ae1: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2016.
      [29]
      ASTM International, ASTM E92-17: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, 2017.
      [30]
      ASTM International, ASTM E23-18: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, 2018.
      [31]
      O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, New method to improve the microstructure and mechanical properties of joint obtained using FSW, Int. J. Adv. Manuf. Technol., 93(2017), No. 9-12, p. 4371. doi: 10.1007/s00170-017-0810-3
      [32]
      X.D. Yu, P. Zuo, J. Xiao, and Z. Fan, Detection of damage in welded joints using high order feature guided ultrasonic waves, Mech. Syst. Sig. Process., 126(2019), p. 176. doi: 10.1016/j.ymssp.2019.02.026
      [33]
      Y.S. Wang, T. Gao, D.B. Liu, H. Sun, B.R. Miao, and X.L. Qing, Propagation characteristics of ultrasonic weld-guided waves in friction stir welding joint of same material, Ultrasonics, 102(2020), art. No. 106058. doi: 10.1016/j.ultras.2019.106058
      [34]
      W.H. Minnick and M.A. Prosser, Gas Tungsten Arc Welding Handbook, Goodheart-Willcox Company, Inc., Tinley Park, Illinois, 1996.
      [35]
      R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Continous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion, Mater. Sci. Eng. A, 396(2005), No. 1-2, p. 341. doi: 10.1016/j.msea.2005.01.053
      [36]
      J.Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. A, 405(2005), No. 1-2, p. 277. doi: 10.1016/j.msea.2005.06.009
      [37]
      B. Bagheri, M. Abbasi, A. Abdollahzadeh, and H. Omidvar, Advanced approach to modify friction stir spot welding process, Met. Mater. Int., 26(2020), No. 10, p. 1562. doi: 10.1007/s12540-019-00416-x
      [38]
      C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Mater., 51(2004), No. 6, p. 509. doi: 10.1016/j.scriptamat.2004.05.043
      [39]
      Z.Y. Ma, A.H. Feng, D.L. Chen, and J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci., 43(2018), No. 4, p. 269. doi: 10.1080/10408436.2017.1358145
      [40]
      D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, New York, 2009, p. 156.
      [41]
      G.E. Dieter and D. Bacon, Mechanical and Metallurgy, McGraw-Hill, London, 1988, p. 184.
      [42]
      M. Hajizadeh, S. Emami, and T. Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1517. doi: 10.1007/s12613-020-2001-8
      [43]
      D. Wu, J. Shen, M.B. Zhou, L. Cheng, and J.X. Sang, Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1169. doi: 10.1007/s12613-017-1507-1
      [44]
      A.H. Baghdadi, Z. Sajuri, N.F.M. Selamat, M.Z. Omar, Y. Miyashita, and A.H. Kokabi, Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1285. doi: 10.1007/s12613-019-1834-5
      [45]
      B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1133. doi: 10.1007/s12613-020-1993-4
      [46]
      W.D. Callister, Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sons, Inc., New Jersey, 2007.
      [47]
      Y.Z. Estrin, P.A. Zabrodin, I.S. Braude, T.V. Grigorova, N.V. Isaev, V.V. Pustovalov, V.S. Fomenko, and S.E. Shumilin, Low temperature plastic deformation of AZ31 magnesium alloy with different microstructures, Low Temp. Phys., 36(2010), No. 12, p. 1100. doi: 10.1063/1.3539781
      [48]
      N. Hansen, The effect of grain size and strain on the tensile flow stress of aluminium at room temperature, Acta Metall., 25(1977), No. 8, p. 863. doi: 10.1016/0001-6160(77)90171-7
      [49]
      M. Naderi, M. Abbasi, and A. Saeed-Akbari, Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1852. doi: 10.1007/s11661-012-1546-1
      [50]
      H.R. Yuan, S.B. Lin, C.L. Yang, C.X. Fan, and S. Wang, Microstructure and porosity analysis in ultrasonic assisted TIG welding of 2014 aluminum alloy, China Weld., 20(2011), No. 1, p. 39.
      [51]
      B. Bagheri. M. Abbasi, and M. Dadaei, Mechanical behavior and microstructure of AA6061-T6 joints made by friction stir vibration welding, J. Mater. Eng. Perform., 29(2020), No. 2, p. 1165. doi: 10.1007/s11665-020-04639-7
      [52]
      N. Kumar, R.S. Mishra, and J.A. Baumann, Residual Stresses in Friction Stir Welding, Elsevier, Waltham, MA, 2014.
      [53]
      X.F. Lei, Y. Deng, Y.Y. Peng, Z.M. Yin, and G.F. Xu, Microstructure and properties of TIG/FSW welded joints of a new Al–Zn–Mg–Sc–Zr alloy, J. Mater. Eng. Perform., 22(2013), No. 9, p. 2723. doi: 10.1007/s11665-013-0577-0
      [54]
      B. Bagheri, A.A.M. Rizi, M. Abbasi, and M. Givi, Friction stir spot vibration welding: Improving the microstructure and mechanical properties of Al5083 joint, Metall. Microstruct. Anal., 8(2019), No. 5, p. 713. doi: 10.1007/s13632-019-00563-y
      [55]
      M. Abbasi, M.A. Shafaat, M. Ketabchi, D.F. Haghshenas, and M. Abbasi, Application of the GTN model to predict the forming limit diagram of IF-steel, J. Mech. Sci. Technol., 26(2012), No. 2, p. 345. doi: 10.1007/s12206-011-1038-z

    Catalog


    • /

      返回文章
      返回