留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 9
Sep.  2020

图(9)

数据统计

分享

计量
  • 文章访问数:  1765
  • HTML全文浏览量:  416
  • PDF下载量:  29
  • 被引次数: 0
Li Meng, Jun-ming Liu, Ning Zhang, Hao Wang, Yu Han, Cheng-xu He, Fu-yao Yang,  and Xin Chen, Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1251-1258. https://doi.org/10.1007/s12613-020-2102-4
Cite this article as:
Li Meng, Jun-ming Liu, Ning Zhang, Hao Wang, Yu Han, Cheng-xu He, Fu-yao Yang,  and Xin Chen, Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, pp. 1251-1258. https://doi.org/10.1007/s12613-020-2102-4
引用本文 PDF XML SpringerLink
研究论文

基于EBSD数据,采用考虑各向异性效应的改进蒙特卡罗模型对冷轧超薄晶粒取向硅钢的再结晶过程进行了模拟

  • Research Article

    Simulation of recrystallization based on EBSD data using a modified Monte Carlo model that considers anisotropic effects in cold-rolled ultra-thin grain-oriented silicon steel

    + Author Affiliations
    • A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel. The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation. Three types of nucleation mechanisms, namely, random nucleation, high-stored-energy site nucleation (HSEN), and high-angle boundary nucleation (HABN), were considered for simulation. In particular, the nucleation and growth behaviors of Goss-oriented ({011}<100>) grains were investigated. Results showed that Goss grains had a nucleation advantage in HSEN and HABN. The amount of Goss grains was the highest according to HABN, and it matched the experimental measurement. However, Goss grains lacked a size advantage across all mechanisms during the recrystallization process.

    • loading
    • [1]
      S. Mishra, C. Därmann, and K. Lücke, On the development of the goss texture in iron-3% silicon, Acta Metall., 32(1984), No. 12, p. 2185. doi: 10.1016/0001-6160(84)90161-5
      [2]
      K.I. Arai and K. Ishiyama, Rolled texture and magnetic properties of 3% silicon steel, J. Appl. Phys., 64(1988), No. 10, p. 5352. doi: 10.1063/1.342369
      [3]
      T. Kubota, Recent progress on non-oriented silicon steel, Steel Res. Int., 76(2005), No. 6, p. 464. doi: 10.1002/srin.200506040
      [4]
      X.H. Gao, K.M. Qi, and C.L. Qiu, Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling, Mater. Sci. Eng. A, 430(2006), No. 1-2, p. 138. doi: 10.1016/j.msea.2006.05.058
      [5]
      H.Y. Song, H.T. Liu, Y.P. Wang, and G.D. Wang, Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method, J. Magn. Magn. Mater., 426(2017), p. 32. doi: 10.1016/j.jmmm.2016.11.038
      [6]
      D. Dorner, S. Zaefferer, and D. Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe−3% Si single crystal, Acta Mater., 55(2007), No. 7, p. 2519. doi: 10.1016/j.actamat.2006.11.048
      [7]
      J.T. Park and J.A. Szpunar, Evolution of recrystallization texture in nonoriented electrical steel, Acta Mater., 51(2003), No. 11, p. 3037. doi: 10.1016/S1359-6454(03)00115-0
      [8]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, Netherlands, 2004.
      [9]
      D.J. Srolovitz, G.S. Grest, and M.P. Anderson, Computer simulation of recrystallization-I. Homogeneous nucleation and growth, Acta Metall., 34(1986), No. 9, p. 1833. doi: 10.1016/0001-6160(86)90128-8
      [10]
      Y. Liu, T. Baudin, and R. Penelle, Simulation of normal grain growth by cellular automata, Scripta Mater., 34(1996), No. 11, p. 1679. doi: 10.1016/1359-6462(96)00055-3
      [11]
      C.E. Krill Iii and L.Q. Chen, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50(2002), No. 12, p. 3059. doi: 10.1016/S1359-6454(02)00084-8
      [12]
      D. Raabe and R.C. Becker, Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium, Modell. Simul. Mater. Sci. Eng., 8(2000), No. 4, p. 445. doi: 10.1088/0965-0393/8/4/304
      [13]
      D.N. Fan and L.Q. Chen, Diffusion-controlled grain growth in two-phase solids, Acta Mater., 45(1997), No. 8, p. 3297. doi: 10.1016/S1359-6454(97)00022-0
      [14]
      D.Q. Xin, C.X. He, X.H. Gong, H. Wang, L. Meng, G. Ma, P.F. Hou, and W.K. Zhang, Monte Carlo study on abnormal growth of Goss grains in Fe–3%Si steel induced by second-phase particles, Inter. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1397. doi: 10.1007/s12613-016-1363-4
      [15]
      Y.B. Chun, S.L. Semiatin, and S.K. Hwang, Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium, Acta Mater., 54(2006), No. 14, p. 3673. doi: 10.1016/j.actamat.2006.03.055
      [16]
      D.E. Solas, C.N. Tomé, O. Engler, and H.R. Wenk, Deformation and recrystallization of hexagonal metals: Modeling and experimental results for zinc, Acta Mater., 49(2001), No. 18, p. 3791. doi: 10.1016/S1359-6454(01)00261-0
      [17]
      R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current issues in recrystallization: A review, Mater. Sci. Eng. A, 238(1997), No. 2, p. 219. doi: 10.1016/S0921-5093(97)00424-3
      [18]
      J.Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H.C. Lee, Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel, Acta Mater., 55(2007), No. 15, p. 4935. doi: 10.1016/j.actamat.2007.05.014
      [19]
      N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root, Neutron diffraction method for stored energy measurement in interstitial free steel, Acta Mater., 45(1997), No. 6, p. 2485. doi: 10.1016/S1359-6454(96)00371-0
      [20]
      D.J. Srolovitz, G.S. Grest, M.P. Anderson, and A.D. Rollett, Computer simulation of recrystallization-II. Heterogeneous nucleation and growth, Acta Metall., 36(1988), No. 8, p. 2115. doi: 10.1016/0001-6160(88)90313-6
      [21]
      F.J. Humphreys, Nucleation in recrystallization, Mater. Sci. Forum, 467-470(2004), No. 1, p. 107.
      [22]
      W.T. Read and W. Shockley, Dislocation models of crystal grain boundary, Phys. Rev., 78(1950), No. 3, p. 275. doi: 10.1103/PhysRev.78.275
      [23]
      P.A. Beck and P.R. Sperry, Strain induced grain boundary migration in high purity aluminum, J. Appl. Phys., 21(1950), No. 2, p. 150. doi: 10.1063/1.1699614
      [24]
      F. Lin, A. Godfrey, M.A. Miodownik, and Q. Liu, Monte Carlo modeling of cube texture evolution in Ni-tapes during grain growth, Mater. Sci. Forum, 467-470(2004), p. 1075. doi: 10.4028/www.scientific.net/MSF.467-470.1075
      [25]
      A.D. Rollett, D.J. Srolovitz, R.D. Doherty, and M.P. Anderson, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metall., 37(1989), No. 2, p. 627. doi: 10.1016/0001-6160(89)90247-2

    Catalog


    • /

      返回文章
      返回