Cite this article as:

Alexander M. Klyushnikov, Rosa I. Gulyaeva, Evgeniy N. Selivanov, and Sergey M. Pikalov, Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp.1469-1477. https://dx.doi.org/10.1007/s12613-020-2109-x
Alexander M. Klyushnikov, Rosa I. Gulyaeva, Evgeniy N. Selivanov, and Sergey M. Pikalov, Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp.1469-1477. https://dx.doi.org/10.1007/s12613-020-2109-x
引用本文 PDF XML SpringerLink

含镍磁黄铁矿尾矿氧化动力学及机理研究

Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings

Abstract: X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry, differential scanning calorimetry, and mass spectrometry have been used to study the products of nickel-containing pyrrhotite tailings oxidation by oxygen in the air. The kinetic triplets of oxidation, namely, activation energy (Ea), pre-exponential factor (A), and reaction model (f(α)) being a function of the conversion degree (α), were adjusted by regression analysis. In case of a two-stage process representation, the first step proceeds under autocatalysis control and ends at α = 0.42. The kinetic triplet in the first step is Ea = 262.2 kJ/mol, lg A = 14.53 s−1, and f(α) = (1 – α)4.11(1 + 1.51 × 10–4α). For the second step, the process is controlled by the two-dimensional diffusion of the reactants in the layer of oxidation products. The kinetic triplet in the second step is Еa = 215.0 kJ/mol, lg A = 10.28 s−1, and f(α) = (–ln(1 – α))–1. The obtained empirical formulae for the rate of pyrrhotite tailings oxidation reliably describe the macro-mechanism of the process and can be used to design automatization systems for roasting these materials.

 

/

返回文章
返回