Cite this article as: |
Alexander M. Klyushnikov, Rosa I. Gulyaeva, Evgeniy N. Selivanov, and Sergey M. Pikalov, Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1469-1477. https://doi.org/10.1007/s12613-020-2109-x |
X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry, differential scanning calorimetry, and mass spectrometry have been used to study the products of nickel-containing pyrrhotite tailings oxidation by oxygen in the air. The kinetic triplets of oxidation, namely, activation energy (Ea), pre-exponential factor (A), and reaction model (f(α)) being a function of the conversion degree (α), were adjusted by regression analysis. In case of a two-stage process representation, the first step proceeds under autocatalysis control and ends at α = 0.42. The kinetic triplet in the first step is Ea = 262.2 kJ/mol, lg A = 14.53 s−1, and f(α) = (1 – α)4.11(1 + 1.51 × 10–4α). For the second step, the process is controlled by the two-dimensional diffusion of the reactants in the layer of oxidation products. The kinetic triplet in the second step is Еa = 215.0 kJ/mol, lg A = 10.28 s−1, and f(α) = (–ln(1 – α))–1. The obtained empirical formulae for the rate of pyrrhotite tailings oxidation reliably describe the macro-mechanism of the process and can be used to design automatization systems for roasting these materials.
[1] |
A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, A.V. Tarasov, and R.T. Jones, JOM world nonferrous smelter survey Part IV: Nickel: Sulfide, JOM, 59(2007), No. 4, p. 58. doi: 10.1007/s11837-007-0056-x
|
[2] |
F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, Oxford, 2011.
|
[3] |
M. Benzaazoua, H. Bouzahzah, Y. Taha, L. Kormos, D. Kabombo, F. Lessard, B. Bussière, I. Demers, and M. Kongolo, Integrated environmental management of pyrrhotite tailings at Raglan Mine: Part 1 challenges of desulphurization process and reactivity prediction, J. Cleaner Prod., 162(2017), p. 86. doi: 10.1016/j.jclepro.2017.05.161
|
[4] |
E. Peek, A. Barnes, and A. Tuzun, Nickeliferous pyrrhotite—“Waste or resource?”, Miner. Eng., 24(2011), No. 7, p. 625. doi: 10.1016/j.mineng.2010.10.004
|
[5] |
V.N. Kovalev, Modern technology concentration platinum metals from industrial waste by processing of sulphide copper–nickel ores, J. Min. Inst., 2011, 189, p. 284.
|
[6] |
M.N. Naftal, R.D. Shestakova, A.F. Petrov, I.I. Asanova, and I.V. Dmitriev, Development of the efficient technology of autoclave processing of sulfide concentrates with high pyrrhotite content, Tsvetn. Met., 8(2003), p. 38.
|
[7] |
E.N. Selivanov, A.M. Klyushnikov, and R.I. Gulyaeva, Application of sulfide copper ores oxidizing roasting products as sulfidizing agent during melting nickel raw materials to matte, Metallurgist, 63(2019), No. 7-8, p. 867. doi: 10.1007/s11015-019-00901-z
|
[8] |
D.W. Yu, T.A. Utigard, and M. Barati, Fluidized bed selective oxidation–sulfation roasting of nickel sulfide concentrate: Part II. sulfation roasting, Metall. Mater. Trans. B, 45(2014), No. 2, p. 662. doi: 10.1007/s11663-013-9959-9
|
[9] |
T. Kennedy and B.T. Sturman, The oxidation of iron(II) sulphide, J. Therm. Anal., 8(1975), No. 2, p. 329. doi: 10.1007/BF01904010
|
[10] |
P.G. Coombs and Z.A. Munir, The mechanism of oxidation of ferrous sulfide (FeS) powders in the range of 648 to 923 K, Metall. Trans. B, 20(1989), No. 5, p. 661. doi: 10.1007/BF02655922
|
[11] |
R.I. Gulyaeva, E.N. Selivanov, and A.D. Vershinin, Nonisothermal oxidation of pyrrhotines, Russ. Metall. (Met.)
|
[12] |
J.G. Dunn and C.E. Kelly, A TG/MS and DTA study of the oxidation of pentlandite, J. Therm. Anal., 18(1980), No. 1, p. 147. doi: 10.1007/BF01909462
|
[13] |
D.W. Yu and T.A. Utigard, TG/DTA study on the oxidation of nickel concentrate, Thermochim. Acta, 533(2012), p. 56. doi: 10.1016/j.tca.2012.01.017
|
[14] |
Z. Asaki, K. Matsumoto, T. Tanabe, and Y. Kondo, Oxidation of dense iron sulfide, Metall. Trans. B, 14(1983), No. 1, p. 109. doi: 10.1007/BF02670877
|
[15] |
Z. Asaki and Y. Kondo, Oxidation kinetics of iron sulfide in the form of dense plate, pellet and single particle, J. Therm. Anal., 35(1989), No. 6, p. 1751. doi: 10.1007/BF01911664
|
[16] |
A. Alksnis, B. Li, R. Elliott, and M. Barati, Kinetics of oxidation of pyrrhotite, [in] Extraction 2018, Springer, Cham, 2018, p. 403.
|
[17] |
V.N. Yatsenko, A.B. Portov, L.N. Yertseva, and L.S. Tsemekhman, Features of the kinetics and mechanism of the pyrrhotite oxidation by gas mixtures containing oxygen, Tsvetn. Met., 4(2004), p. 46.
|
[18] |
F. Xia, A. Pring, and J. Brugger, Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel, Miner. Eng., 27-28(2012), p. 11. doi: 10.1016/j.mineng.2011.12.001
|
[19] |
C.H. Bamford and C.F.H. Tipper, Reactions in the Solid State, Elsevier, Amsterdam, 1980.
|
[20] |
S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
|
[21] |
Metso Outotec, HSC Chemistry, Metso Outotec, Helsinki [2006-06-12]. https://www.outotec.com/HSC
|
[22] |
ICDD, Powder Diffraction FileTM (PDF®) Search, JCPDS International Centre for Diffraction Data, Pennsylvania [2019-09-05]. https://www.icdd.com/index.php/pdfsearch
|
[23] |
ASTM International, ASTM Standard E112–13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, 2013.
|
[24] |
K. Slopiecka, P. Bartocci, and F. Fantozzi, Thermogravimetric analysis and kinetic study of poplar wood pyrolysis, Appl. Energy, 97(2012), p. 491. doi: 10.1016/j.apenergy.2011.12.056
|
[25] |
M.A. Arshad and A. Maaroufi, Recent advances in kinetics and mechanisms of condensed phase processes: A mini-review, Rev. Adv. Mater. Sci., 51(2017), No. 2, p. 177.
|
[26] |
The NETZSCH Group, NETZSCH Advanced Software version 2006.08, The NETZSCH Group, Selb [2019-09-05]. https://www.therm-soft.com
|
[27] |
S.K. Haldar and J. Tišljar, Introduction to Mineralogy and Petrology, Elsevier, Amsterdam, 2014, p. 81.
|
[28] |
D.P. Kelly and D.J. Vaughan, Pyrrhotine–pentlandite ore textures: A mechanistic approach, Mineral. Mag., 47(1983), No. 345, p. 453. doi: 10.1180/minmag.1983.047.345.06
|
[29] |
D.J. Vaughan and J.R. Craig, Mineral Chemistry of Metal Sulfides, Cambridge University Press, Cambridge, 1978.
|
[30] |
J.G. Dunn and L.C. Mackey, The measurement of ignition temperatures and extents of reaction on iron and iron–nickel sulfides, J. Therm. Anal., 37(1991), No. 9, p. 2143. doi: 10.1007/BF01905584
|
[31] |
J. Opfermann, Kinetic analysis using multivariate non-linear regression. I. basic concepts, J. Therm. Anal. Calorim., 60(2000), No. 2, p. 641. doi: 10.1023/A:1010167626551
|