Cite this article as:

Xiao-guang Liu, Qiu-shuo Mao, Yue Jiang, Yan Li, Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3–SiO2 composite aerogels and their Cu2+ absorption properties, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp.317-324. https://dx.doi.org/10.1007/s12613-020-2111-3
Xiao-guang Liu, Qiu-shuo Mao, Yue Jiang, Yan Li, Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3–SiO2 composite aerogels and their Cu2+ absorption properties, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp.317-324. https://dx.doi.org/10.1007/s12613-020-2111-3
引用本文 PDF XML SpringerLink

Al2O3–SiO2复合气凝胶的制备及其对Cu2+的吸附性能

Preparation of Al2O3–SiO2 composite aerogels and their Cu2+ absorption properties

Abstract: In order to remediate heavy metal ions from waste water, Al2O3–SiO2 composite aerogels are prepared via a sol–gel and an organic solvent sublimation drying method. Various characterisation techniques have been employed including X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), Energy-dispersion X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) N2 adsoprtion isotherm, and atomic absorption spectrometer (AAS). XRD and FTIR suggest that the aerogels are composed of mainly Al2O3 and minor SiO2. They have a high specific surface area (827.544 m2/g) and high porosity (86.0%) with a pore diameter of ~20 nm. Their microstructures show that the distribution of Al, Si, and O is homogeneous. The aerogels can remove ~99% Cu2+ within ~40 min and then reach the equilibrium uptake (~69 mg/g). Preliminary calculations show that the Cu2+ uptake by the aerogels follows pseudo second-order kinetics where chemical sorption may take effect owing largely to the high surface area, high porosity, and abundant functional groups, such as Al–OH and Si–OH, in the aerogel network. The prepared aerogels may serve as efficient absorbents for Cu2+ removal.

 

/

返回文章
返回