留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 1
Jan.  2021

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  3943
  • HTML全文浏览量:  1168
  • PDF下载量:  86
  • 被引次数: 0
Rui-qi Yang, Na Liang, Xuan-yu Chen, Long-wei Wang, Guo-xin Song, Yan-chen Ji, Na Ren, Ya-wei Lü, Jian Zhang,  and Xin Yu, Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 150-159. https://doi.org/10.1007/s12613-020-2131-z
Cite this article as:
Rui-qi Yang, Na Liang, Xuan-yu Chen, Long-wei Wang, Guo-xin Song, Yan-chen Ji, Na Ren, Ya-wei Lü, Jian Zhang,  and Xin Yu, Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 150-159. https://doi.org/10.1007/s12613-020-2131-z
引用本文 PDF XML SpringerLink
研究论文封面文章

具有增强可见光催化氧化性能的富氧空位Sn/Sn3O4x异质结构


  • Research Article

    Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance

    + Author Affiliations
    • Sn3O4, a common two-dimensional semiconductor photocatalyst, can absorb visible light. However, owing to its rapid recombination of photogenerated electron−hole pairs, its absorption is not sufficient for practical application. In this work, a Sn nanoparticle/Sn3O4−x nanosheet heterostructure was prepared by in situ reduction of Sn3O4 under a H2 atmosphere. The Schottky junctions formed between Sn and Sn3O4−x can enhance the photogenerated carrier separation ability. During the hydrogenation process, a portion of the oxygen in the semiconductor can be extracted by hydrogen to form water, resulting in an increase in oxygen vacancies in the semiconductor. The heterostructure showed the ability to remove Rhodamine B. Cell cytocompatibility experiments proved that Sn/Sn3O4−x can significantly enhance cell compatibility and reduce harm to organisms. This work provides a new method for the fabrication of a Schottky junction composite photocatalyst rich in oxygen vacancies with enhanced photocatalytic performance.

    • loading
    • [1]
      O.M. Rodriguez-Narvaez, J.M. Peralta-Hernandez, A. Goonetilleke, and E.R. Bandala, Treatment technologies for emerging contaminants in water: A review, Chem. Eng. J., 323(2017), p. 361. doi: 10.1016/j.cej.2017.04.106
      [2]
      H. Rajbongshi and D. Kalita, Morphology-dependent photocatalytic degradation of organic pollutant and antibacterial activity with CdS nanostructures, J. Nanosci. Nanotechnol., 20(2020), No. 9, p. 5885. doi: 10.1166/jnn.2020.18552
      [3]
      X.Q. Liu, J. Iocozzia, Y. Wang, X. Cui, Y.H. Chen, S.Q. Zhao, Z. Li, and Z.Q. Lin, Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation, Energy Environ. Sci., 10(2017), No. 2, p. 402. doi: 10.1039/C6EE02265K
      [4]
      T.S. Galloway, M. Cole, and C. Lewis, Interactions of microplastic debris throughout the marine ecosystem, Nat. Ecol. Evol., 1(2017), No. 5, art. No. 0116. doi: 10.1038/s41559-017-0116
      [5]
      G. Lofrano, S. Meriç, G.E. Zengin, and D. Orhon, Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review, Sci. Total Environ., 461-462(2013), p. 265. doi: 10.1016/j.scitotenv.2013.05.004
      [6]
      P.I. Cano, J. Colón, M. Ramírez, J. Lafuente, D. Gabriel, and D. Cantero, Life cycle assessment of different physical-chemical and biological technologies for biogas desulfurization in sewage treatment plants, J. Cleaner Prod., 181(2018), p. 663. doi: 10.1016/j.jclepro.2018.02.018
      [7]
      A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972), No. 5358, p. 37. doi: 10.1038/238037a0
      [8]
      H.H. Wang, W.X. Liu, J. Ma, Q. Liang, W. Qin, P.O. Lartey, and X.J. Feng, Design of (GO/TiO2)N one-dimensional photonic crystal photocatalytic photocatalysts with improved photocatalytic activities for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
      [9]
      Y.C. Zhang, Q. Zhang, Z.Y. Dong, L.Y. Wu, and J.M. Hong, Degradation of acetaminophen with ferrous/copperoxide activate persulfate: Synergism of iron and copper, Water Res., 146(2018), p. 232. doi: 10.1016/j.watres.2018.09.028
      [10]
      P. Wang, S. Guo, H.J. Wang, K.K. Chen, N. Zhang, Z.M. Zhang, and T.B. Lu, A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution, Nat. Commun., 10(2019), art. No. 3155. doi: 10.1038/s41467-019-11099-8
      [11]
      H.X. Liu, M.Y. Teng, X.G. Wei, T.D. Li, Z.Y. Jiang, Q.F. Niu, and X.P. Wang, Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater.(2020). DOI: 10.1007/s12613-020-2033-0
      [12]
      M. Sansotera, S.G.M. Kheyli, A. Baggioli, C.L. Bianchi, M.P. Pedeferri, M.V. Diamanti, and W. Navarrini, Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification, Chem. Eng. J., 361(2019), p. 885. doi: 10.1016/j.cej.2018.12.136
      [13]
      X. Yu, S. Wang, X.D. Zhang, A.H. Qi, X.R. Qiao, Z.R. Liu, M.Q. Wu, L.L. Li, and Z.L. Wang, Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing, Nano Energy, 46(2018), p. 29. doi: 10.1016/j.nanoen.2018.01.033
      [14]
      L.W. Wang, X. Zhang, X. Yu, F.E. Gao, Z.Y. Shen, X.L. Zhang, S.G. Ge, J. Liu, Z.J. Gu, and C.Y. Chen, An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity, Adv. Mater., 31(2019), No. 33, art. No. 1901965. doi: 10.1002/adma.201901965
      [15]
      G.X. Song, L.W. Wang, R.Q. Yang, Y.C. Ji, R.T. Zhang, L. Yang, L.H. Ding, A.Z. Wang, N. Ren, and X. Yu, Enhanced antibacterial photocatalytic activity of porous few-layer C3N4, J. Nanosci. Nanotechnol., 20(2020), No. 9, p. 5944. doi: 10.1166/jnn.2020.18550
      [16]
      T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 43(2014), No. 22, p. 7520. doi: 10.1039/C3CS60378D
      [17]
      Z.K. Yue, A.J. Liu, C.Y. Zhang, J. Huang, M.S. Zhu, Y.K. Du, and P. Yang, Noble-metal-free hetero-structural CdS/Nb2O5/N-doped-graphene ternary photocatalytic system as visible-light-driven photocatalyst for hydrogen evolution, Appl. Catal. B, 201(2017), p. 202. doi: 10.1016/j.apcatb.2016.08.028
      [18]
      X. Yu, Z.H. Zhao, D.H. Sun, N. Ren, L.H. Ding, R.Q. Yang, Y.C. Ji, L.L. Li, and H. Liu, TiO2/TiN core/shell nanobelts for efficient solar hydrogen generation, Chem. Commun., 54(2018), No. 47, p. 6056. doi: 10.1039/C8CC02651C
      [19]
      X. Yu, Z.H. Zhao, N. Ren, J. Liu, D.H. Sun, L.H. Ding, and H. Liu, Top or bottom, assembling modules determine the photocatlytic property of the sheetlike nanostructured hybrid photocatalyst composed with Sn3O4 and rGO (GQD), ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 11775. doi: 10.1021/acssuschemeng.8b02030
      [20]
      D.D. Li, S.H. Yu, and H.L. Jiang, From UV to near-infrared light-responsive metal−organic framework composites: Plasmon and upconversion enhanced photocatalysis, Adv. Mater., 30(2018), No. 27, art. No. 1707377. doi: 10.1002/adma.201707377
      [21]
      X. Cheng, Y.J. Zhang, and Y.P. Bi, Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays, Nano Energy, 57(2019), p. 542. doi: 10.1016/j.nanoen.2018.12.079
      [22]
      Z.R. Liu, L.W. Wang, X. Yu, J. Zhang, R.Q. Yang, X.D. Zhang, Y.C. Ji, M.Q. Wu, L. Deng, L.L. Li, and Z.L. Wang, Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p−n heterojunction, Adv. Funct. Mater., 29(2019), No. 41, art. No. 1807279. doi: 10.1002/adfm.201807279
      [23]
      L.M. Sun, R. Li, W.W. Zhan, Y.S. Yuan, X.J. Wang, X.G. Han, and Y.L. Zhao, Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts, Nat. Commun., 10(2019), art. No. 2270. doi: 10.1038/s41467-019-10302-0
      [24]
      Y.J. Wang, Q.S. Wang, X.Y. Zhan, F.M. Wang, M. Safdar, and J. He, Visible light driven type Ⅱ heterostructures and their enhanced photocatalysis properties: A review, Nanoscale, 5(2013), No. 18, p. 8326. doi: 10.1039/c3nr01577g
      [25]
      Z.R. Liu, X. Yu, and L.L. Li, Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field, Chin. J. Catal., 41(2020), No. 4, p. 534. doi: 10.1016/S1872-2067(19)63431-5
      [26]
      H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
      [27]
      C.M. Ding, J.Y. Shi, Z.L. Wang, and C. Li, Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces, ACS Catal., 7(2017), No. 1, p. 675. doi: 10.1021/acscatal.6b03107
      [28]
      X.F. Li, X.B. Meng, J. Liu, D.S. Geng, Y. Zhang, M.N. Banis, Y.L. Li, J.L. Yang, R.Y. Li, X.L. Sun, M. Cai, and M.W. Verbrugge, Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage, Adv. Funct. Mater., 22(2012), No. 8, p. 1647. doi: 10.1002/adfm.201101068
      [29]
      X.J. She, J.J. Wu, H. Xu, J. Zhong, Y. Wang, Y.H. Song, K.Q. Nie, Y. Liu, Y.C. Yang, M.-T.F. Rodrigues, R. Vajtai, J. Lou, D.L. Du, H.M. Li, and P.M. Ajayan, High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts, Adv. Energy Mater., 7(2017), No. 17, art. No. 1700025. doi: 10.1002/aenm.201700025
      [30]
      X. Yu, Z.H. Zhao, J. Zhang, W.B. Guo, L.L. Li, H. Liu, and Z.L. Wang, One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis, CrystEngComm, 19(2017), No. 1, p. 129. doi: 10.1039/C6CE02241C
      [31]
      X. Yu, L.F. Wang, J. Zhang, W.B. Guo, Z.H. Zhao, Y. Qin, X.N. Mou, A.X. Li, and H. Liu, Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance, J. Mater. Chem. A, 3(2015), No. 37, p. 19129. doi: 10.1039/C5TA05023E
      [32]
      R.Q. Yang, Y.C. Ji, Q. Li, Z.H. Zhao, R.T. Zhang, L.L. Liang, F. Liu, Y.K. Chen, S.W. Han, X. Yu, and H. Liu, Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance, Appl. Catal. B, 256(2019), art. No. 117798. doi: 10.1016/j.apcatb.2019.117798
      [33]
      S.D. Balgude, Y.A. Sethi, B.B. Kale, N.R. Munirathnam, D.P. Amalnerkar, and P.V. Adhyapak, Nanostructured layered Sn3O4 for hydrogen production and dye degradation under sunlight, RSC Adv., 6(2016), No. 98, p. 95663. doi: 10.1039/C6RA20058C
      [34]
      C.M. Li, S.Y. Yu, H.J. Dong, C.B. Liu, H.J. Wu, H.N. Che, and G. Chen, Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight, Appl. Catal. B, 238(2018), p. 284. doi: 10.1016/j.apcatb.2018.07.049
      [35]
      L.P. Zhu, H. Lu, D. Hao, L.L. Wang, Z.H. Wu, L.J. Wang, P. Li, and J.H. Ye, Three-dimensional lupinus-like TiO2 nanorod@Sn3O4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance, ACS Appl. Mater. Interfaces, 9(2017), No. 44, p. 38537. doi: 10.1021/acsami.7b11872
      [36]
      R.Q. Yang, Y.C. Ji, J. Zhang, R.T. Zhang, F. Liu, Y.K. Chen, L.L. Liang, S.W. Han, X. Yu, and H. Liu, Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/Ni foam heterostructure photoelectrocatalyst, Catal. Today, 335(2019), p. 520. doi: 10.1016/j.cattod.2019.02.019
      [37]
      B.B. Zhang, L. Wang, Y.J. Zhang, Y. Ding, and Y.P. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation, Angew. Chem. Int. Ed., 57(2018), No. 8, p. 2248. doi: 10.1002/anie.201712499
      [38]
      Y.X. Zhao, Y.F. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, and T.R. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, Adv. Mater., 31(2019), No. 16, art. No. 1806482. doi: 10.1002/adma.201806482
      [39]
      Y.W. Wang, F. Liu, G.R. Williams, D.B. Zhang, X.G. Kong, and X.D. Lei, Enhancing photocatalytic activity of Nb2O5−x for aerobic oxidation through synergy of oxygen vacancy and porosity, J. Nanosci. Nanotechnol., 20(2020), No. 4, p. 2495. doi: 10.1166/jnn.2020.17197
      [40]
      M.F. Liang, T. Borjigin, Y.H. Zhang, B.H. Liu, H. Liu, and H. Guo, Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction, Appl. Catal. B, 243(2019), p. 566. doi: 10.1016/j.apcatb.2018.11.010
      [41]
      J. Bao, X.D. Zhang, B. Fan, J.J. Zhang, M. Zhou, W.L. Yang, X. Hu, H. Wang, B.C. Pan, and Y. Xie, Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation, Angew. Chem. Int. Ed., 54(2015), No. 25, p. 7399. doi: 10.1002/anie.201502226
      [42]
      C.Z. Yuan, J.Y. Li, L.R. Hou, X.G. Zhang, L.F. Shen, and X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors, Adv. Funct. Mater., 22(2012), No. 21, p. 4592. doi: 10.1002/adfm.201200994
      [43]
      H.D. She, H. Zhou, L.S. Li, L. Wang, J.W. Huang, and Q.Z. Wang, Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol, ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 11939. doi: 10.1021/acssuschemeng.8b02217
      [44]
      G.H. Chen, S.Z. Ji, Y.H. Sang, S.J. Chang, Y.N. Wang, P. Hao, J. Claverie, H. Liu, and G.W. Yu, Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV−visible light photocatalytic activity, Nanoscale, 7(2015), No. 7, p. 3117. doi: 10.1039/C4NR05749J
      [45]
      X. Yu, Z.H. Zhao, D.H. Sun, N. Ren, J.H. Yu, R.Q. Yang, and H. Liu, Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for effcient photocatalytic hydrogen generation, Appl. Catal. B, 227(2018), p. 470. doi: 10.1016/j.apcatb.2018.01.055
      [46]
      D.H. Nam, R.H. Kim, D.W. Han, and H.S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries, Electrochim. Acta, 66(2012), p. 126. doi: 10.1016/j.electacta.2012.01.084
      [47]
      Y.H. He, D.Z. Li, J. Chen, Y. Shao, J.J. Xian, X.Z. Zheng, and P. Wang, Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light, RSC Adv., 4(2014), No. 3, p. 1266. doi: 10.1039/C3RA45743E
      [48]
      Q.Z. Zhang, S.Y. Huang, J.J. Deng, D.T. Gangadharan, F. Yang, Z.H. Xu, G. Giorgi, M. Palummo, M. Chaker, and D.L. Ma, Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution, Adv. Funct. Mater., 29(2019), No. 28, art. No. 1902486. doi: 10.1002/adfm.201902486
      [49]
      X. Yu, Z.H. Zhao, J. Zhang, W.B. Guo, J.C. Qiu, D.S. Li, Z. Li, X.N. Mou, L.L. Li, A.X. Li, and H. Liu, Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-powered, wireless UV photodetector, Small, 12(2016), No. 20, p. 2759. doi: 10.1002/smll.201503388
      [50]
      W.W. Xia, H.B. Wang, X.H. Zeng, J. Han, J. Zhu, M. Zhou, and S.D. Wu, High-efficiency photocatalytic activity of type Ⅱ SnO/Sn3O4 heterostructures via interfacial charge transfer, CrystEngComm, 16(2014), No. 30, p. 6841. doi: 10.1039/C4CE00884G
      [51]
      R.C. Pawar, V. Khare, and C.S. Lee, Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light, Dalton Trans., 43(2014), No. 33, p. 12514. doi: 10.1039/C4DT01278J

    Catalog


    • /

      返回文章
      返回