Abstract:
Flower-like ZnO microstructures were successfully produced using a hydrothermal method employing ZnSO
4/(NH
4)
2SO
4 as a raw material. The effect of the operating parameters of the hydrothermal temperature, OH
−/Zn
2+ molar ratio, time, and amount of dispersant on the phase structure and micromorphology of the ZnO particles were investigated. The synthesis conditions of the flower-like ZnO microstructures were: hydrothermal temperature of 160°C, OH
−/Zn
2+ molar ratio of 5:1, reaction time of 4 h, and 4 mL of dispersant. The flower-like ZnO microstructures were comprised of hexagon-shaped ZnO rods arranged in a radiatively. Degradation experiments of Rhodamine B with the flower-like ZnO microstructures demonstrated a degradation efficiency of 97.6% after 4 h of exposure to sunshine, indicating excellent photocatalytic capacity. The growth mechanism of the flower-like ZnO microstructures was presented.