留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(7)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3039
  • HTML全文浏览量:  576
  • PDF下载量:  64
  • 被引次数: 0
Tingye Qi, Haochen Wang, Guorui Feng, Yujiang Zhang, Jinwen Bai,  and Yanna Han, Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1161-1169. https://doi.org/10.1007/s12613-020-2148-3
Cite this article as:
Tingye Qi, Haochen Wang, Guorui Feng, Yujiang Zhang, Jinwen Bai,  and Yanna Han, Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1161-1169. https://doi.org/10.1007/s12613-020-2148-3
引用本文 PDF XML SpringerLink
研究论文

煅烧温度对氢氧化钙溶液处理过的玉米秸秆灰活性的影响

  • 通讯作者:

    冯国瑞    E-mail: fgr09000@126.com

文章亮点

  • (1) 运用多种理化手段评估了煅烧温度对玉米秸秆灰火山灰活性的影响。
  • (2) 研究阐明了无定形SiO2在氢氧化钙溶液中向C-S-H转化的Si-O链式结构演变。
  • (3) 综合确定了玉米秸秆灰火山灰活性最佳的煅烧温度。
  • 本研究评估了煅烧温度对玉米秸秆灰火山灰活性的影响。将经500℃、700℃、850℃煅烧后的玉米秸秆灰样品分别在氢氧化钙溶液中溶解6个小时,并得到其残留样品。用Fourier变换红外光谱仪、X射线衍射仪、扫描电子显微镜、X射线光电子能谱对玉米秸秆灰样品和玉米秸秆灰残留样品进行分析,确定化学键形式、矿物组成、微观结构和Si 2p转化行为,并研究了玉米秸秆灰-氢氧化钙混合溶液的电导率、pH值、电导率损失随溶解时间的变化规律。玉米秸秆灰的主要氧化物成分为二氧化硅和氧化钾。与其他煅烧温度相比,经500℃煅烧后的玉米秸秆灰Si4+溶解度含量较高。由于玉米秸秆灰在700℃下含有较多的KCl,有加快反应速率的作用,因此经700℃煅烧的玉米秸秆灰与氢氧化钙混合溶液的电导率和电导率损失均高于其他煅烧温度。玉米秸秆灰样品中检测有水化硅酸钙,玉米秸秆灰残留样品中发现有较小的立方形和接近球形的水化硅酸钙颗粒。总的来说,在500℃下玉米秸秆灰具有最佳的火山灰活性但要考虑凝聚的影响。
  • Research Article

    Effect of calcination temperature on the pozzolanic activity of maize straw stem ash treated with portlandite solution

    + Author Affiliations
    • The effect of calcination temperature on the pozzolanic activity of maize straw stem ash (MSSA) was evaluated. The MSSA samples calcined at temperature values of 500, 700, and 850°C were dissolved in portlandite solution for 6 h, thereby obtaining residual samples. The MSSA and MSSA residual samples were analyzed using Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy to determine vibration bonds, minerals, microstructures, and Si 2p transformation behavior. The conductivity, pH value, and loss of conductivity with dissolving time of the MSSA-portlandite mixed solution were also determined. The main oxide composition of MSSA was silica and potassium oxide. The dissolution of the Si4+ content of MSSA at 500°C was higher than those of the other calcination temperatures. The conductivity and loss of conductivity of MSSA at 700°C were higher than those of the other calcination temperatures at a particular dissolving time due to the higher KCl content in MSSA at 700°C. C–S–H was easily identified in MSSA samples using X-ray powder diffraction, and small cubic and nearly spherical particles of C–S–H were found in the MSSA residual samples. In conclusion, the optimum calcination temperature of MSSA having the best pozzolanic activity is 500°C, but excessive agglomeration must be prevented.
    • loading
    • [1]
      S.V. Vassilev, D. Baxter, L.K. Andersen, and C.G. Vassileva, An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification, Fuel, 105(2013), p. 40. doi: 10.1016/j.fuel.2012.09.041
      [2]
      Z. Zhang, Z.N. Han, and C.D. Sheng, Feasibility evaluation of biomass fly ashes from power station using as fertilizer, Trans. Chin. Soc. Agric. Eng., 32(2016), No. 7, p. 200.
      [3]
      M. Frías, H. Savastano, E. Villar, M.I.S.d. Rojas, and S. Santos, Characterization and properties of blended cement matrices containing activated bamboo leaf wastes, Cem. Concr. Compos., 34(2012), No. 9, p. 1019. doi: 10.1016/j.cemconcomp.2012.05.005
      [4]
      E.V. Morales, E. Villar-Cociña, M. Frías, S.F. Santos, and H. Savastano Jr., Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation, Cem. Concr. Compos., 31(2009), No. 1, p. 22. doi: 10.1016/j.cemconcomp.2008.10.004
      [5]
      J.F. Shen, X.Z. Liu, S.G. Zhu, H.L. Zhang, and J.J. Tan, Effects of calcination parameters on the silica phase of original and leached rice husk ash, Mater. Lett., 65(2011), No. 8, p. 1179. doi: 10.1016/j.matlet.2011.01.034
      [6]
      L.W.O. Soares, R.M. Braga, J.C.O. Freitas, R.A. Ventura, D.S.S. Pereira, and D.M.A. Melo, The effect of rice husk ash as pozzolan in addition to cement Portland class G for oil well cementing, J. Pet. Sci. Eng., 131(2015), p. 80. doi: 10.1016/j.petrol.2015.04.009
      [7]
      G.C. Cordeiro, R.D.T. Filho, and E.M.R. Fairbairn, Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash, Constr. Build. Mater., 23(2009), No. 10, p. 3301. doi: 10.1016/j.conbuildmat.2009.02.013
      [8]
      M. Jamil, A.B.M.A. Kaish, S.N. Raman, and M.F.M. Zain, Pozzolanic contribution of rice husk ash in cementitious system, Constr. Build. Mater., 47(2013), p. 588. doi: 10.1016/j.conbuildmat.2013.05.088
      [9]
      E.V. Cociña, H. Savastano, L. Rodier, M. Lefran, and M. Frías, Pozzolanic characterization of Cuban bamboo leaf ash: Calcining temperature and kinetic parameters, Waste Biomass Valorization, 9(2018), No. 4, p. 691. doi: 10.1007/s12649-016-9741-8
      [10]
      W.T. Xu, T.Y. Lo, and S.A. Memon, Microstructure and reactivity of rich husk ash, Constr. Build. Mater., 29(2012), p. 541. doi: 10.1016/j.conbuildmat.2011.11.005
      [11]
      G.C. Cordeiro and C.P. Sales, Influence of calcining temperature on the pozzolanic characteristics of elephant grass ash, Cem. Concr. Compos., 73(2016), p. 98. doi: 10.1016/j.cemconcomp.2016.07.008
      [12]
      S. Munshi and R.P. Sharma, Experimental investigation on strength and water permeability of mortar incorporate with rice straw ash, Adv. Mater. Sci. Eng., 2016(2016), p. 1. doi: https://doi.org/10.1155/2016/9696505
      [13]
      S. Munshi and R.P. Sharma, Investigation on the pozzolanic properties of rice straw ash prepared at different temperatures, Mater. Express, 8(2018), No. 2, p. 157. doi: 10.1166/mex.2018.1416
      [14]
      J. Roselló, L. Soriano, M.P. Santamarina, J.L. Akasaki, J. Monzó, and J. Payá, Rice straw ash: A potential pozzolanic supplementary material for cementing systems, Ind. Crops Prod., 103(2017), p. 39. doi: 10.1016/j.indcrop.2017.03.030
      [15]
      M.P. Luxán, F. Madruga, and J. Saavedra, Rapid evaluation of pozzolanic activity of natural products by conductivity measurement, Cem. Concr. Res., 19(1989), No. 1, p. 63. doi: https://doi.org/10.1016/0008-8846(89)90066-5
      [16]
      Q.J. Yu, K. Sawayama, S. Sugita, M. Shoya, and Y. Isojima, The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product, Cem. Concr. Res., 29(1999), No. 1, p. 37. doi: 10.1016/S0008-8846(98)00172-0
      [17]
      V.T.A. Van, C. Rößler, D.D. Bui, and H.M. Ludwig, Pozzolanic reactivity of mesoporous amorphous rice husk ash in portlandite solution, Constr. Build. Mater., 59(2014), p. 111. doi: 10.1016/j.conbuildmat.2014.02.046
      [18]
      J.C.B. Moraes, J.L.P. Melges, J.L. Akasaki, M.M. Tashima, L. Soriano, J. Monzó, M.V. Borrachero, and J. Payá, Pozzolanic reactivity studies on a biomass-derived waste from sugar cane production: Sugar cane straw ash (SCSA), ACS Sustainable Chem. Eng., 4(2016), No. 8, p. 4273. doi: 10.1021/acssuschemeng.6b00770
      [19]
      S. Wansom, S. Janjaturaphan, and S. Sinthupinyo, Characterizing pozzolanic activity of rice husk ash by impedance spectroscopy, Cem. Concr. Res., 40(2010), No. 12, p. 1714. doi: 10.1016/j.cemconres.2010.08.013
      [20]
      S.J. Xiong, M. Öhman, Y.F. Zhang, and T. Lestander, Corn stalk ash composition and its melting (slagging) behavior during combustion, Energy Fuels, 24(2010), No. 9, p. 4866. doi: 10.1021/ef1005995
      [21]
      G.R. Feng, T.Y. Qi, G. Xu, D.S. Zhang, Z.H. Wang, and Z. Li, Physical chemical characterization of thermally and aqueous solution treated maize stalk stem ash and its potential use in a cementing system, Energy Sources A: Recovery Util. Environ. Eff., 42(2020), No. 8, p. 930. doi: https://doi.org/10.1080/15567036.2019.1602206
      [22]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [23]
      Y. Feng, Q.S. Chen, Y.L. Zhou, Q.X. Yang, Q.L. Zhang, L. Jiang, and H.Q. Guo, Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity, Constr. Build. Mater., 240(2020), art. No. 117970. doi: 10.1016/j.conbuildmat.2019.117970
      [24]
      Y. Wang, Y.T. Hu, X. Zhao, S.Q. Wang, and G.X. Xing, Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times, Energy Fuels, 27(2013), No. 10, p. 5890. doi: 10.1021/ef400972z
      [25]
      V.D. Katare and M.V. Madurwar, Experimental characterization of sugarcane biomass ash—A review, Constr. Build. Mater., 152(2017), p. 1. doi: 10.1016/j.conbuildmat.2017.06.142
      [26]
      D. Boström, N. Skoglund, A. Grimm, C. Boman, M. Öhman, M. Broström, and R. Backman, Ash transformation chemistry during combustion of biomass, Energy Fuels, 26(2012), No. 1, p. 85. doi: 10.1021/ef201205b
      [27]
      J.N. Knudsen, P.A. Jensen, and K. Dam-Johansen, Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass, Energy Fuels, 18(2004), No. 5, p. 1385. doi: 10.1021/ef049944q
      [28]
      C.L. He, B. Osbaeck, and E. Makovicky, Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects, Cem. Concr. Res., 25(1995), No. 8, p. 1691. doi: 10.1016/0008-8846(95)00165-4
      [29]
      J. Payá, M.V. Borrachero, J. Monzó, E. Peris-Mora, and F. Amahjour, Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity, Cem. Concr. Res., 31(2001), No. 1, p. 41. doi: https://doi.org/10.1016/S0008-8846(00)00434-8
      [30]
      C.J. Shi and R.L. Day, Acceleration of the reactivity of fly ash by chemical activation, Cem. Concr. Res., 25(1995), No. 1, p. 15. doi: 10.1016/0008-8846(94)00107-A
      [31]
      L. Yang, Z.N. Zhu, D.L. Li, X.K. Yan, and H.J. Zhang, Effects of particle size on the flotation behavior of coal fly ash, Waste Manag., 85(2019), p. 490. doi: 10.1016/j.wasman.2019.01.017
      [32]
      D.Q. Wang, Q. Wang, and Z.X. Huang, Investigation on the poor fluidity of electrically conductive cement–graphite paste: Experiment and simulation, Mater. Des., 169(2019), art. No. 107679. doi: 10.1016/j.matdes.2019.107679
      [33]
      A. Zdziennicka and B. Jańczuk, Effect of anionic surfactant and short-chain alcohol mixtures on adsorption at quartz/water and water/air interfaces and the wettability of quartz, J. Colloid Interface Sci., 354(2011), No. 1, p. 396. doi: 10.1016/j.jcis.2010.09.063
      [34]
      N. Rahmat, A. Sabali, A.V. Sandu, N. Sahiron, and G.I. Sandu, Study of calcination temperature and concentration of NaOH effect on crystallinity of silica from sugarcane bagasse ash (SCBA), Rev. Chim. (Bucharest), 67(2016), No. 9, p. 1872.
      [35]
      M.E. Simonsen, C. Sønderby, and E.G. Søgaard, Synthesis and characterization of silicate polymers, J. Sol-Gel Sci. Technol., 50(2009), No. 3, p. 372. doi: 10.1007/s10971-009-1907-4
      [36]
      P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, and X.D. Cong, Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy, J. Am. Ceram. Soc., 82(1999), No. 3, p. 742. doi: https://doi.org/10.1111/j.1151-2916.1999.tb01826.x
      [37]
      C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, and L. Börjesson, Structure of mixed alkali/alkaline-earth silicate glasses from neutron diffraction and vibrational spectroscopy, Phys. Rev. B, 72(2005), No. 6, art. No. 064206. doi: 10.1103/PhysRevB.72.064206
      [38]
      C.A. Rees, J.L. Provis, G.C. Lukey, and J.S.J. van Deventer, Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging, Langmuir, 23(2007), No. 15, p. 8170. doi: 10.1021/la700713g
      [39]
      V.L. Zholobenko, S.M. Holmes, C.S. Cundy, and J. Dwyer, Synthesis of MCM-41 materials: An in situ FTIR study, Microporous Mater., 11(1997), No. 1-2, p. 83. doi: 10.1016/S0927-6513(97)00033-3
      [40]
      N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, and J. Sipusic, Dehydration of a layered double hydroxide—C2AH8, Thermochim. Acta, 464(2007), No. 1-2, p. 7. doi: 10.1016/j.tca.2007.07.022
      [41]
      J. Partyka and M. Leśniak, Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO system modified by variable molar ratio of SiO2/Al2O3, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 152(2016), p. 82. doi: 10.1016/j.saa.2015.07.045
      [42]
      M.E. Simonsen, C. Sønderby, Z.S. Li, and E.G. Søgaard, XPS and FT-IR investigation of silicate polymers, J. Mater. Sci., 44(2009), No. 8, p. 2079. doi: 10.1007/s10853-009-3270-9
      [43]
      T. Hiemstra and W.H. van Riemsdijk, Multiple activated complex dissolution of metal (hydr) oxides: A thermodynamic approach applied to quartz, J. Colloid Interface Sci., 136(1990), No. 1, p. 132. doi: 10.1016/0021-9797(90)90084-2

    Catalog


    • /

      返回文章
      返回