留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 3
Mar.  2021

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2643
  • HTML全文浏览量:  565
  • PDF下载量:  85
  • 被引次数: 0
Sadia Ilyas, Rajiv Ranjan Srivastava,  and Hyunjung Kim, Liquid–liquid extraction of phosphorus from sulfuric acid solution using benzyl dimethyl amine, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 367-372. https://doi.org/10.1007/s12613-020-2151-8
Cite this article as:
Sadia Ilyas, Rajiv Ranjan Srivastava,  and Hyunjung Kim, Liquid–liquid extraction of phosphorus from sulfuric acid solution using benzyl dimethyl amine, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 367-372. https://doi.org/10.1007/s12613-020-2151-8
引用本文 PDF XML SpringerLink
研究论文

采用BDMA从硫酸溶液中液–液萃取分离磷

  • Research Article

    Liquid–liquid extraction of phosphorus from sulfuric acid solution using benzyl dimethyl amine

    + Author Affiliations
    • This study addresses the liquid–liquid extraction behavior of phosphorus from a sulfuric acid solution using benzyl dimethyl amine (BDMA) in kerosene. The extraction equilibria investigated with varied BDMA concentrations could reveal the formation of

      \begin{document}$\overline {3\left[ {{\rm{BDMA}}} \right] \cdot \left[ {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right]} $\end{document}

      complex in the organic phase. The thermodynamic properties determined at various temperatures indicated that the process was exothermic with a calculated enthalpy (

      $\Delta {H^ \ominus }$

      ) of −24.0 kJ·mol−1. The organic-to-aqueous phase (O/A) volume ratio was varied to elucidate the quantitative extraction of phosphorus. The McCabe–Thiele diagram plotted for the extraction isotherm was validated for the requirement of three counter-current stages in the extraction at an O/A volume ratio of 2.0/3.5. The back-extraction of phosphorus from the loaded organic phase was quantitatively achieved by contacting 4.0 mol·L−1 H2SO4 solution in three stages of counter-current contact at an O/A volume ratio of 3/2. This study can be applied to remove phosphorus from the sulfuric acid leach solutions of monazite processing, and many other solutions.

    • loading
    • [1]
      E.H. Borai, M.S. Abd El-Ghany, I.M. Ahmed, M.M. Hamed, A.M. Shahr EI-Din, and H.F. Aly, Modified acidic leaching for selective separation of thorium phosphate and rare earth concentrates from Egyptian crude monazite, Int. J. Miner. Process., 149(2016), p. 34. doi: 10.1016/j.minpro.2016.02.003
      [2]
      M.S. Alshammari, I.M. Ahmed, A.A. Nayl, H.F. Aly, G.G. Mohamed, and S.A.R. Mostafa, An assessment for the recovery of lanthanides and P2O5 from phosphate rocks, Adv. Environ. Biol., 10(2016), No. 9, p. 49.
      [3]
      Y. Kanazawa and M. Kamitani, Rare earth minerals and resources in the world, J. Alloys Compd., 408–412(2006), p. 1339.
      [4]
      Y.A. El-Nadi, J.A. Daoud, and H.F. Aly, Modified leaching and extraction of uranium from hydrous oxide cake of Egyptian monazite, Int. J. Miner. Process., 76(2005), No. 1-2, p. 101. doi: 10.1016/j.minpro.2004.12.005
      [5]
      L. Zhang, J. Chen, W.Q. Jin, Y.F. Deng, J. Tian, and Y. Zhang, Extraction mechanism of cerium (IV) in H2SO4/H3PO4 system using bifunctional ionic liquid extractants, J. Rare Earths, 31(2013), No. 12, p. 1195. doi: 10.1016/S1002-0721(12)60426-8
      [6]
      D. Zou, J. Chen, and D.Q. Li, Separation chemistry and clean technique of cerium (IV): A review, J. Rare Earths, 32(2014), No. 8, p. 681. doi: 10.1016/S1002-0721(14)60125-3
      [7]
      Environmental Agency, Aquatic eutrophication in England and Wales: Proposed management strategy, [in] Environmental Issue Series, Environmental Agency, Bristol, 2003.
      [8]
      S. Burk, A.L. Heathwaite and N. Preedy, Transfer of phosphorus to surface waters: Eutrophication, [in] Phosphorusin Environmental Technologies Principles and Applications, IWA Publishing, London, 2004, p. 120.
      [9]
      J.Q. Jiang and Q. Mwabonje, Phosphorus recovery by liquid–liquid extraction, Sep. Sci. Technol., 44(2009), No. 13, p. 3258. doi: 10.1080/01496390903183204
      [10]
      M. Yang, Q.S. Zhu, C.L. Fan, Z.H. Xie, and H.Z. Li, Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 346. doi: 10.1007/s12613-015-1079-x
      [11]
      J.Q. Jiang and N.J.D. Graham, Pre-polymerised inorganic coagulants and phosphorus removal by coagulation - A review, Water SA, 24(1998), No. 3, p. 237.
      [12]
      U. Berg and C. Schaum, Recovery of phosphorus from sewage sludge and sludge ashes - Application in Germany and Northern Europe, [in] Proceedings of the I. National Sludge Symposium, Izmirs, 2005, p. 87.
      [13]
      G. Tchobanoglous and F.L. Burton, Wastewater Engineering—Treatment, Disposal and Reuse, 4th ed., Metcalf and Eddy, Inc., eds., McGraw Hill, New York, 2003.
      [14]
      R.R. Srivastava, S. Ilyas, H. Kim, S. Choi, H.B. Trinh, M.A. Ghauri, and N. Ilyas, Biotechnological recycling of critical metals from waste printed circuit boards, J. Chem. Technol. Biotechnol., 95(2020), No. 11, p. 2796. doi: 10.1002/jctb.6469
      [15]
      M.A. Muhsan, S. Ilyas, H.A. Cheema, S. Masud, and N. Shabbir, Recovery of nitric acid from effluent streams using solvent extraction with TBP: A comparative study in absence and presence of metal nitrates, Sep. Purif. Technol., 186(2017), p. 90. doi: 10.1016/j.seppur.2017.05.058
      [16]
      G.M. Ritcey and A.W. Ashbrook, Solvent Extraction. Principles and Applications to Process Metallurgy, Part I, Elsevier, Amsterdam, 1984.
      [17]
      R.X. Mu, J. Chen, D. Zou, K. Li, and D.Q. Li, Liquid-liquid extraction and recovery of Cerium (IV) and Phosphorus from sulfuric acid solution using Cyanex 923, Sep. Purif. Technol., 209(2019), p. 351. doi: 10.1016/j.seppur.2018.07.008
      [18]
      O.N. Mwabonje and J.L. Jiang, A trial of using solvent extraction for phosphorus recovery, J. Water Res. Prot., 2(2010), No. 9, p. 830. doi: 10.4236/jwarp.2010.29098
      [19]
      J.A. Rard and T.J. Wolery, The standard chemical-thermodynamic properties of phosphorus and some of its key compounds and aqueous species: An evaluation of differences between the previous recommendations of NBS/NIST and CODATA, J. Solution Chem., 36(2007), No. 12, p. 1585.
      [20]
      D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, and R.H. Schumm, Selected Values of Chemical Thermodynamic Properties, Tables for the First Thirty-Four Elements in the Standard Order of Arrangement, NBS Technical Note 270-3, U.S. Government Printing Office, Washington, 1968.
      [21]
      M. Cox, Solvent extraction in hydrometallurgy, [in] Solvent Extraction Principles and Practice, Revised and Expanded, CRC Press, New York, 2004, p. 466.
      [22]
      R.R. Srivastava, S. Ilyas, H. Kim, N.L.M. Tri, N. Hassan, M. Mudassir, and N. Talib, Liquid–liquid extraction and reductive stripping of chromium to valorize industrial effluent, JOM, 72(2020), No. 2, p. 839. doi: 10.1007/s11837-019-03948-0
      [23]
      Y. Marcus, Solvent extraction of inorganic species, Chem. Rev., 63(1963), No. 2, p. 139. doi: 10.1021/cr60222a004
      [24]
      V.S. Kislik, Solvent Extraction: Classical and Novel Approaches, 1st ed., Elsevier, Amsterdam, 2011.
      [25]
      D.L. Pavia, G.M. Lampman, G.S. Kriz, and J.R. Vyvyan, Introduction of Spectroscopy, Brooks/Cole Cengage Learning, Belmont, 2001.

    Catalog


    • /

      返回文章
      返回