留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2239
  • HTML全文浏览量:  399
  • PDF下载量:  75
  • 被引次数: 0
Xuemin Qiu, Hongying Yang, Guobao Chen, Linlin Tong, Zhenan Jin, and Qin Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 439-445. https://doi.org/10.1007/s12613-020-2170-5
Cite this article as:
Xuemin Qiu, Hongying Yang, Guobao Chen, Linlin Tong, Zhenan Jin, and Qin Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 439-445. https://doi.org/10.1007/s12613-020-2170-5
引用本文 PDF XML SpringerLink
研究论文

氰化尾渣浮选回收过程中黄铜矿的界面特性研究

  • 通讯作者:

    杨洪英    E-mail: yanghy@smm.neu.edu.cn

文章亮点

  • (1) 发现了氰化尾渣浮选回收过程中部分细粒方铅矿包裹在黄铜矿表面,导致铜铅难分离。
  • (2) 发现了非极性润滑油导致铜铅难分选浮选的原因。
  • (3) 发现了氰化尾渣中难浮选回收的黄铜矿表面存在的铁矾类包裹层。
  • 氰化尾渣是氰化提金过程中产生的固体废弃物,同时也是高价值的二次资源,含有大量的铜、铅、锌等有价元素。由于氰化过程长时间的充气搅拌,氰化尾渣的矿物界面发生严重的改性,但是关于这方面的研究较少。本文针对某高铜铅氰化尾渣浮选过程中存在铜铅难分离及铜回收率低等问题开展黄铜矿界面性质研究,采用的研究方法包括粒度分析仪、XRD分析、SEM–EDS微界面分析、FTIR分析、界面洗脱及浮选实验等。实验结果表明部分黄铜矿表面致密包裹一层细粒的方铅矿,导致黄铜矿表现为类似于方铅矿的浮选特性,导致这种现象的原因是黄铜矿表面被非极性油污染。不能被浮选回收的黄铜矿表面包裹一层铁矾类似物,导致黄铜矿表面被钝化而不利于药剂的吸附。通过研究可知氰化尾渣中黄铜矿界面容易被杂质污染及氧化层包裹,导致其难于被浮选回收。

  • Research Article

    Interface behavior of chalcopyrite during flotation from cyanide tailings

    + Author Affiliations
    • The interface characteristics of cyanide tailings are different from those of the raw ore. In this study, valuable elements could not be thoroughly recovered via the flotation of cyanide tailings from Shandong, China. The interface and floatability of these tailings were investigated by phase analysis and flotation tests. The chalcopyrite in the cyanide tailings was fine and had a porous surface. The floatability of 68% chalcopyrite was similar to that of galena in the presence of a collector. A layer of fine galena particles compactly wrapped the chalcopyrite. The chalcopyrite recovery sharply decreased as the nonpolar oil residue in cyanide tailings was extracted using alcohol; however, this removal had no effect on the galena. The remaining chalcopyrite in the flotation tailings was covered with an oxidation layer consisting of O, Fe, S, Pb, Cu, Zn, and Si.

    • loading
    • [1]
      G.M. Ritcey, Tailings management in gold plants, Hydrometallurgy, 78(2005), No. 1-2, p. 3. doi: 10.1016/j.hydromet.2005.01.001
      [2]
      D.B. Donato, O. Nichols, H. Possingham, M. Moore, P.F. Ricci, and B.N. Noller, A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife, Environ. Int., 33(2007), No. 7, p. 974. doi: 10.1016/j.envint.2007.04.007
      [3]
      S.R. Griffiths, G.B. Smith, D.B. Donato, and C.G. Gillespie, Factors influencing the risk of wildlife cyanide poisoning on a tailings storage facility in the Eastern Goldfields of Western Australia, Ecotoxicol. Environ. Saf., 72(2009), No. 5, p. 1579. doi: 10.1016/j.ecoenv.2009.02.010
      [4]
      R. Hamberg, G. Bark, C. Maurice, and L. Alakangas, Release of arsenic from cyanidation tailings, Miner. Eng., 93(2016), p. 57. doi: 10.1016/j.mineng.2016.04.013
      [5]
      H.Y. Li, H.L. Long, L.B. Zhang, S.H. Yin, S.W. Li, F. Zhu, and H.M. Xie, Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings, J. Hazard. Mater., 384(2020), art. No. 121456. doi: 10.1016/j.jhazmat.2019.121456
      [6]
      H.Y. Li, A.Y. Ma, C. Srinivasakannan, L.B. Zhang, S.W. Li, and S.H. Yin, Investigation on the recovery of gold and silver from cyanide tailings using chlorination roasting process, J. Alloys Compd., 763(2018), p. 241. doi: 10.1016/j.jallcom.2018.05.298
      [7]
      C.C. Lv, J. Ding, P. Qian, Q.C. Li, S.F. Ye, and Y.F. Chen, Comprehensive recovery of metals from cyanidation tailing, Miner. Eng., 70(2015), p. 141. doi: 10.1016/j.mineng.2014.09.007
      [8]
      X.L. Yang, X. Huang, and T.S. Qiu, Recovery of zinc from cyanide tailings by flotation, Miner. Eng., 84(2015), p. 100. doi: 10.1016/j.mineng.2015.10.003
      [9]
      Y.L. Zhang, H.M. Li, and X.J. Yu, Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation, J. Hazard. Mater., 213-214(2012), p. 167. doi: 10.1016/j.jhazmat.2012.01.076
      [10]
      C.C. Lü, J. Ding, G.Y. Fu, Y. Liu, Y.G. Lu, P. Qian, and S.F. Ye, Present situation and prospect of recovering valuable elements from cyanidation tailing, CIESC J., 67(2016), No. 4, p. 1079.
      [11]
      S.C. Qiu, Z. Hu, and X.Y. Qiu, Research status of gold extraction process of roasting cyanide tailings, Precious Met., 40(2019), No. 3, p. 84.
      [12]
      L.G. Sun, Y.C. Chang, X.H. Xu, H.H. Huang, Y. Wang, and L. Zhang, The main technology status and development trend of harmless and resourceful utilization of cyanide tailings, China Resour. Compr. Util., 35(2017), No. 10, p. 59.
      [13]
      J. Wang, W.L. Chen, Z.L. Jiao, and X.Q. Peng, Research progress on recovering gold and silver from cyanide residues, Conserv. Util. Miner. Resour., 4(2014), p. 54.
      [14]
      H. Liu, Y.M. Zhu, Y.W. Ma, Y.X. Han, and Y.J. Li, Study on flotation and recovery technology for pyrite and sphalerite in cyanidation tailings, Multipurpose Util. Miner. Resour., 2017, No. 2, p. 99.
      [15]
      H.H. Huang, L. Wang, Y. Wang, Y. Li, L.G. Sun, and Y.C. Chang, Research on the process mineralogy of certain slag from gold extraction, Gold, 2(2016), p. 64.
      [16]
      X.M. Qiu, H.Y. Yang, G.B. Chen, and S.X. Zhao, Interface characteristics of lead and copper minerals from ultra-fine cyanide tailings, J. Northeast. Univ. Nat. Sci., 1(2019), p. 58.
      [17]
      Y. Zhang, B.N. Jiang, Y.H. Wang, and J.C. Gong, Study on physical phase analysis of lead in cyanidation tailings, Gold, 10(2014), p. 81.
      [18]
      F.S. Yao, Application of large tower mill in cyanide fine grinding of gold concentrate, Gold Sci. Technol., 22(2014), No. 3, p. 82.
      [19]
      J.H. Kyle, P.L. Breuer, K.G. Bunney, and R. Pleysier, Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing: Part II: Deportment in gold ore processing by cyanidation, Hydrometallurgy, 111-112(2012), p. 10. doi: 10.1016/j.hydromet.2011.09.005
      [20]
      H. Wang, S.M. Wen, G. Han, L. Xu, and Q.C. Feng, Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate, Miner. Eng., 146(2020), art. No. 106132. doi: 10.1016/j.mineng.2019.106132
      [21]
      W.J. Zhao, D.W. Liu, and Q.C. Feng, Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability, Miner. Eng., 152(2020), art. No. 106373. doi: 10.1016/j.mineng.2020.106373
      [22]
      E. Forbes, Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques, Int. J. Miner. Process., 99(2011), No. 1-4, p. 1. doi: 10.1016/j.minpro.2011.02.001
      [23]
      T. Miettinen, J. Ralston, and D. Fornasiero, The limits of fine particle flotation, Miner. Eng., 23(2010), No. 5, p. 420. doi: 10.1016/j.mineng.2009.12.006
      [24]
      Y.X. Yu, L.Q. Ma, M.L. Cao, and Q. Liu, Slime coatings in froth flotation: A review, Miner. Eng., 114(2017), p. 26. doi: 10.1016/j.mineng.2017.09.002
      [25]
      B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Cyanide chemistry and its effect on mineral flotation, Miner. Eng., 66-68(2014), p. 25. doi: 10.1016/j.mineng.2014.06.010
      [26]
      C.A. Johnson, The fate of cyanide in leach wastes at gold mines: An environmental perspective, Appl. Geochem., 57(2015), p. 194. doi: 10.1016/j.apgeochem.2014.05.023
      [27]
      N. Kuyucak and A. Akcil, Cyanide and removal options from effluents in gold mining and metallurgical processes, Miner. Eng., 50-51(2013), p. 13. doi: 10.1016/j.mineng.2013.05.027
      [28]
      Y.W. Ma, Y.X. Han, Y.M. Zhu, Y.J. Li, and H. Liu, Flotation behaviors and mechanisms of chalcopyrite and galena after cyanide treatment, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3245. doi: 10.1016/S1003-6326(16)64457-6
      [29]
      A.D. Bas, E. Koc, E.Y. Yazici, and H. Deveci, Treatment of copper-rich gold ore by cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching, Trans. Nonferrous Met. Soc. China, 25(2015), No. 2, p. 597. doi: 10.1016/S1003-6326(15)63642-1
      [30]
      J.C. Wilmot, The Chemistry of Cyanide in the Presence of Reduced Sulfur Sources [Dissertation], University of Nebraska–Lincoln, Lincoln, 1997, p.143.
      [31]
      Ü. Akdemir, Shear flocculation of fine hematite particles and correlation between flocculation, flotation and contact angle, Powder Technol., 94(1997), No. 1, p. 1. doi: 10.1016/S0032-5910(97)03216-6
      [32]
      B.A. Wills and J.A. Finch. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Butterworth Heinemann, Oxford, 2016, p. 66.
      [33]
      T.S. Qiu, X. Huang, and X.L. Yang, Recovery of copper from cyanidation tailing by flotation, JOM, 68(2016), No. 2, p. 548. doi: 10.1007/s11837-015-1726-8

    Catalog


    • /

      返回文章
      返回