Cite this article as: |
Saisai Li, Haijun Zhang, Longhao Dong, Haipeng Liu, and Quanli Jia, Three-dimensional graphitic carbon sphere foams as sorbents for cleaning oil spills, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 513-520. https://doi.org/10.1007/s12613-020-2180-3 |
张海军 E-mail: zhanghaijun@wust.edu.cn
海上溢油事故频发,工业含油污水、城市含油废水的随意排放对人类生活环境和健康造成了严重的影响。传统的水油分离方法不仅容易引起二次环境污染而且也会造成资源浪费。因此,在本工作中,以多孔石墨微球为原料,采用凝胶注膜法制备了具有三维网络结构的多孔石墨微球泡沫,并将其应用在油类污染物的吸附中。研究结果表明,所制备的石墨微球泡沫的孔隙率高达62%,其孔径范围约为25–200 μm,且所制备的泡沫表现出良好的亲油疏水性,其水接触角(WCA)随温度的升高而增大,最大约为130°。此外,泡沫中石墨微球的含量对所制备产物的疏水性、接触角及显微微观结构的影响较大。所制备的泡沫具有优异的油吸附能力,对石蜡油、植物油和真空泵油的吸附能力约为12–15 g/g,约为石墨微球泡沫的10倍左右,在石油泄漏事故中具有较大的应用潜力。
Frequent offshore oil spill accidents, industrial oily sewage, and the indiscriminate disposal of urban oily sewage have caused serious impacts on the human living environment and health. The traditional oil–water separation methods not only cause easily environmental secondary pollution but also a waste of limited resources. Therefore, in this work, three-dimensional (3D) graphitic carbon sphere (GCS) foams (collectively referred hereafter as 3D foams) with a 3D porous structure, pore size distribution of 25–200 μm, and high porosity of 62vol% were prepared for oil adsorption via gel casting using GCS as the starting materials. The results indicate that the water contact angle (WCA) of the as-prepared 3D foams is 130°. The contents of GCS greatly influenced the hydrophobicity, WCA, and microstructure of the as-prepared samples. The adsorption capacities of the as-prepared 3D foams for paraffin oil, vegetable oil, and vacuum pump oil were approximately 12–15 g/g, which were 10 times that of GCS powder. The as-prepared foams are desirable characteristics of a good sorbent and could be widely used in oil spill accidents.
[1] |
H.T. Zhu, S.S. Qiu, W. Jiang, D.X. Wu, and C.Y. Zhang, Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup, Environ. Sci. Technol., 45(2011), No. 10, p. 4527. doi: 10.1021/es2002343
|
[2] |
Y.C. Cheng, X.F. Li, Q. Xu, O. Garcia-Pineda, O.B. Andersen, and W.G. Pichel, SAR observation and model tracking of an oil spill event in coastal waters, Mar. Pollut. Bull., 62(2011), No. 2, p. 350. doi: 10.1016/j.marpolbul.2010.10.005
|
[3] |
S. Songsaeng, P. Thamyongkit, and S. Poompradub, Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills, J. Adv. Res., 20(2019), p. 79. doi: 10.1016/j.jare.2019.05.007
|
[4] |
M. Busto, E.E. Tarifa, and C.R. Vera, Extraction/adsorption as applied to the dearomatization of white mineral oil, Chem. Eng. Res. Des., 146(2019), p. 239. doi: 10.1016/j.cherd.2019.03.026
|
[5] |
L. van Gelderen and G. Jomaas, Experimental procedure for laboratory studies of in situ burning: Flammability and burning efficiency of crude oil, J. Vis. Exp., 135(2018), .
|
[6] |
H.J. Chieng and M.F. Chong, Boron adsorption on palm oil mill boiler (POMB) ash impregnated with chemical compounds, Ind. Eng. Chem. Res., 52(2013), No. 41, p. 14658. doi: 10.1021/ie401215n
|
[7] |
V.M.F. Alexandre, F.V. do Nascimento, and M.C. Cammarota, Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater, Environ. Technol., 37(2016), No. 20, p. 2608. doi: 10.1080/09593330.2016.1156772
|
[8] |
S. Ullah, S. Hussain, W. Ahmad, H. Khan, K.I. Khan, S.U. Khan, and S. Khan, Desulfurization of model oil through adsorption over activated charcoal and bentonite clay composites, Chem. Eng. Technol., 43(2020), No. 3, p. 564. doi: 10.1002/ceat.201900203
|
[9] |
L. Zhang, H.Q. Li, X.J. Lai, X.J. Su, T. Liang, and X.R. Zeng, Thiolated graphene-based superhydrophobic sponges for oil-water separation, Chem. Eng. J., 316(2017), p. 736. doi: 10.1016/j.cej.2017.02.030
|
[10] |
Q. Zhu, Q.M. Pan, and F.T. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges, J. Phys. Chem. C, 115(2011), No. 35, p. 17464. doi: 10.1021/jp2043027
|
[11] |
N. Jiang, R. Shang, S.G.J. Heijman, and L.C. Rietveld, Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms, Sep. Purif. Technol., 235(2020), art. No. 116152. doi: 10.1016/j.seppur.2019.116152
|
[12] |
R.P. Li, C.Y. Lin, and X.T. Liu, Adsorption of tungstate on kaolinite: Adsorption models and kinetics, RSC Adv., 6(2016), No. 24, p. 19872. doi: 10.1039/C5RA24201K
|
[13] |
Y. Zhao, F. Liu, and X.P. Qin, Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH, Chemosphere, 180(2017), p. 373. doi: 10.1016/j.chemosphere.2017.04.007
|
[14] |
S. Ahmed, A. Ramli, S. Yusup, and M. Farooq, Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption, Chem. Eng. Res. Des., 122(2017), p. 33. doi: 10.1016/j.cherd.2017.04.004
|
[15] |
H.Y. Wang, E.Q. Wang, Z.J. Liu, D. Gao, R.X. Yuan, L.Y. Sun, and Y.J. Zhu, A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication, J. Mater. Chem. A, 3(2015), No. 1, p. 266. doi: 10.1039/C4TA03945A
|
[16] |
D. Tian, R.Y. Chen, J. Xu, Y.W. Li, and X.H. Bu, A three-dimensional metal-organic framework for selective sensing of nitroaromatic compounds, APL Mater., 2(2014), No. 12, art. No. 124111. doi: 10.1063/1.4904879
|
[17] |
J.T. Wang and Y.A. Zheng, Oil/water mixtures and emulsions separation of stearic acid-functionalized sponge fabricated via a facile one-step coating method, Sep. Purif. Technol., 181(2017), p. 183. doi: 10.1016/j.seppur.2017.03.024
|
[18] |
X.M. Chen, J.A. Weibel, and S.V. Garimella, Continuous oil–water separation using polydimethylsiloxane-functionalized melamine sponge, Ind. Eng. Chem. Res., 55(2016), No. 12, p. 3596. doi: 10.1021/acs.iecr.6b00234
|
[19] |
A.A. Nikkhah, H. Zilouei, A. Asadinezhad, and A. Keshavarz, Removal of oil from water using polyurethane foam modified with nanoclay, Chem. Eng. J., 262(2015), p. 278. doi: 10.1016/j.cej.2014.09.077
|
[20] |
E.V. Gorb, P. Hofmann, A.E. Filippov, and S.N. Gorb, Oil adsorption ability of three-dimensional epicuticular wax coverages in plants, Sci. Rep., 7(2017), No. 1, art. No. 45483. doi: 10.1038/srep45483
|
[21] |
Y. Feng and J.F. Yao, Design of melamine sponge-based three-dimensional porous materials toward applications, Ind. Eng. Chem. Res., 57(2018), No. 22, p. 7322. doi: 10.1021/acs.iecr.8b01232
|
[22] |
Q.H. Wang, Y.W. Li, S.L. Jin, S.B. Sang, Y.B. Xu, X.F. Xu, and G.H. Wang, Enhanced mechanical properties of Al2O3–C refractories with silicon hybridized expanded graphite, Mater. Sci. Eng. A, 709(2018), p. 160. doi: 10.1016/j.msea.2017.10.046
|
[23] |
Q. Gu, T. Ma, F. Zhao, Q.L. Jia, X.H. Liu, G.Q. Liu, and H.X. Li, Enhancement of the thermal shock resistance of MgO–C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates, J. Alloys Compd., 847(2020), art. No. 156339. doi: 10.1016/j.jallcom.2020.156339
|
[24] |
D.H. Ding, L. Lv, G.Q. Xiao, J.Y. Luo, C.K. Lei, Y. Ren, S.L. Yang, P. Yang, and X. Hou, Improved properties of low-carbon MgO–C refractories with the addition of multilayer graphene/MgAl2O4 composite powders, Int. J. Appl. Ceram. Technol., 17(2020), No. 2, p. 645. doi: 10.1111/ijac.13347
|
[25] |
M.Q. Liu, J.T. Huang, Q.M. Xiong, S.Q. Wang, Z. Chen, X.B. Li, Q.W. Liu, and S.W. Zhang, Micro-nano carbon structures with platelet, glassy and tube-like morphologies, Nanomaterials, 9(2019), No. 9, art. No. 1242. doi: 10.3390/nano9091242
|
[26] |
X. Wang, Y. Chen, C. Yu, J. Ding, D. Guo, C.J. Deng, and H.X. Zhu, Preparation and application of ZrC-coated flake graphite for Al2O3–C refractories, J. Alloys Compd., 788(2019), p. 739. doi: 10.1016/j.jallcom.2019.02.239
|
[27] |
Q. Gu, F. Zhao, X.H. Liu, and Q.L. Jia, Preparation and thermal shock behavior of nanoscale MgAl2O4 spinel-toughened MgO-based refractory aggregates, Ceram. Int., 45(2019), No. 9, p. 12093. doi: 10.1016/j.ceramint.2019.03.107
|
[28] |
M.F. Elkady, Equilibrium and kinetics behavior of oil spill process onto synthesized nano-activated carbon, Am. J. Appl. Chem., 3(2015), No. 3, art. No. 22. doi: 10.11648/j.ajac.s.2015030301.14
|
[29] |
T. Yao, Y.G. Zhang, Y.P. Xiao, P.C. Zhao, L. Guo, H.W. Yang, and F.B. Li, The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite, J. Mol. Liq., 218(2016), p. 611. doi: 10.1016/j.molliq.2016.02.050
|
[30] |
M. Wiśniewski, P.A. Gauden, A.P. Terzyk, P. Kowalczyk, A. Pacholczyk, and S. Furmaniak, Detecting adsorption space in carbon nanotubes by benzene uptake, J. Colloid Interface Sci., 391(2013), p. 74. doi: 10.1016/j.jcis.2012.09.026
|
[31] |
S.S. Li, J.H. Liu, J.K. Wang, L. Han, H.J. Zhang, and S.W. Zhang, Catalytic preparation of graphitic carbon spheres for Al2O3–SiC–C castables, Ceram. Int., 44(2018), No. 11, p. 12940. doi: 10.1016/j.ceramint.2018.04.108
|
[32] |
S.S. Li, J.H. Liu, J.K. Wang, Q. Zhu, X.W. Zhao, H.J. Zhang, and S.W. Zhang, Fabrication of graphitic carbon spheres and their application in Al2O3–SiC–C refractory castables, Int. J. Appl. Ceram. Technol., 15(2018), No. 5, p. 1166. doi: 10.1111/ijac.12877
|
[33] |
S.S. Li, F.L. Li, J.K. Wang, L. Tian, H.J. Zhang, and S.W. Zhang, Preparation of hierarchically porous graphitic carbon spheres and their applications in supercapacitors and dye adsorption, Nanomaterials, 8(2018), No. 8, art. No. 625. doi: 10.3390/nano8080625
|
[34] |
A. Kozbial, C. Trouba, H.T. Liu, and L. Li, Characterization of the intrinsic water wettability of graphite using contact angle measurements: Effect of defects on static and dynamic contact angles, Langmuir, 33(2017), No. 4, p. 959. doi: 10.1021/acs.langmuir.6b04193
|