留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 9
Sep.  2021

图(15)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  5469
  • HTML全文浏览量:  1807
  • PDF下载量:  101
  • 被引次数: 0
Di Zheng, Wei-dong Song, Yu-ye Tan, Shuai Cao, Zi-long Yang,  and Li-juan Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1429-1439. https://doi.org/10.1007/s12613-020-2181-2
Cite this article as:
Di Zheng, Wei-dong Song, Yu-ye Tan, Shuai Cao, Zi-long Yang,  and Li-juan Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1429-1439. https://doi.org/10.1007/s12613-020-2181-2
引用本文 PDF XML SpringerLink
研究论文

微生物浸矿技术在我国的研究现状及发展前景

  • Research Article

    Fractal and microscopic quantitative characterization of unclassified tailings flocs

    + Author Affiliations
    • A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings. Four flocculant types (i.e., ZYZ, JYC-2, ZYD, and JYC-1) are considered in this study. The fractal characteristics and internal structures of tailings flocs with different flocculant types and settlement heights are analyzed by conducting scanning electron microscopy and X-ray micro-computed tomography scanning experiments based on the fractal theory. Results show that unclassified tailings flocs are irregular clusters with fractal characteristics, and the flocculation effect of the four flocculant types has the following trend: ZYZ > JYC-2 > ZYD > JYC-1. The size and average grayscale value of tailings flocs decrease with the increase in settlement height. The average grayscale values at the top and bottom are 144 and 103, respectively. The settlement height remarkably affects the pore distribution pattern, as reflected in the constructed three-dimensional pore model of tailings flocs. The top part of flocs has relatively good penetration, whereas the bottom part of flocs has mostly dispersed pores. The number of pores increases exponentially with the increase in settlement height. By contrast, the size of pores initially increases and subsequently decreases with the increase in settlement height.

    • loading
    • [1]
      X. Zhao, A. Fourie, and C.C. Qi, An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1206. doi: 10.1007/s12613-019-1885-7
      [2]
      Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
      [3]
      M.F. Cai, D.L. Xue, and F.H. Ren, Current status and development strategy of metal mines, Chin. J. Eng., 41(2019), No. 4, p. 417.
      [4]
      S. Cao and W.D. Song, Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill, Int. J. Miner. Process., 166(2017), p. 62. doi: 10.1016/j.minpro.2017.07.005
      [5]
      H.Y. Wang, Research on the Key Technologies of Mud Making Andtailing Releasing of Vertical Sand Tank in Fankoulead-Zinc Mine [Dissertation], Central South University, Hunan, 2009.
      [6]
      K. Tudu, S. Pal, and N.R. Mandre, Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 498. doi: 10.1007/s12613-018-1596-5
      [7]
      S. Wang, X.P. Song, X.J. Wang, Q.S. Chen, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
      [8]
      C. Cruz, J. Ramos, P. Robles, W.H. Leiva, R.I. Jeldres, and L.A. Cisternas, Partial seawater desalination treatment for improving chalcopyrite floatability and tailing flocculation with clay content, Miner. Eng., 151(2020), art. No. 106307. doi: 10.1016/j.mineng.2020.106307
      [9]
      D.L. Wang, Q.L. Zhang, Q.S. Chen, C.C. Qi, Y. Feng, and C.C. Xiao, Temperature variation characteristics in flocculation settlement of tailings and its mechanism, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1438. doi: 10.1007/s12613-020-2022-3
      [10]
      L. Panda, P.K. Banerjee, S.K. Biswal, R. Venugopal, and N.R. Mandre, Performance evaluation for selectivity of the flocculant on hematite in selective flocculation, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1123. doi: 10.1007/s12613-013-0844-y
      [11]
      Y. Wang, A.X. Wu, H.J. Wang, S.Z. Liu, and B. Zhou, Influence mechanism of flocculant dosage on tailings thickening, J. Univ. Sci. Technol. Beijing, 35(2013), No. 11, p. 1419.
      [12]
      Y. Yang, A.X. Wu, B. Klein, and H.J. Wang, Effect of primary flocculant type on a two-step flocculation process on iron ore fine tailings under alkaline environment, Miner. Eng., 132(2019), p. 14. doi: 10.1016/j.mineng.2018.11.053
      [13]
      Q.Y. Lu, B. Yan, L. Xie, J. Huang, Y. Liu, and H.B. Zeng, A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants, Sci. Total Environ., 565(2016), p. 369. doi: 10.1016/j.scitotenv.2016.04.192
      [14]
      L. Han, D.Q. Gan, Z.Y. Liu, and W.Z. Lv, Experimental study on the flocculation and sedimentation laws of total tailings, Min. Res. Dev., 37(2017), No. 3, p. 39.
      [15]
      Q. Zhou, J.H. Liu, A.X. Wu, H.J. Wang, S.F. Fu, and Y. Gu, Effect and mechanism of synergist on tailings slurry thickening performance, Chin. J. Eng., 41(2019), No. 11, p. 1405.
      [16]
      W.J. Zou, Y.J. Cao, C.B. Sun, and Z.J. Zhang, Mechanism of action of polyacrylamide in selective flocculation flotation of fine coal, Chin. J. Eng., 38(2016), No. 3, p. 299.
      [17]
      M. Ejtemaei, S. Ramli, D. Osborne, and A.V. Nguyen, Synergistic effects of surfactant−flocculant mixtures on ultrafine coal dewatering and their linkage with interfacial chemistry, J. Cleaner Prod., 232(2019), p. 953. doi: 10.1016/j.jclepro.2019.06.039
      [18]
      C. Eswaraiah, S.K. Biswal, B.K. Mishra, Settling characteristics of ultrafine iron ore slimes, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 95. doi: 10.1007/s12613-012-0521-6
      [19]
      A.X. Wu, Z.E. Ruan, J.D. Wang, S.H. Yin, and C.M. Ai, Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation, Chin. J. Eng., 41(2019), No. 8, p. 981.
      [20]
      H.Z. Jiao, H.J. Wang, A.X. Wu, X.W. Ji, Q.W. Yan, and X. Li, Rule and mechanism of flocculation sedimentation of unclassified tailings, J. Univ. Sci. Technol. Beijing, 32(2010), No. 6, p. 702.
      [21]
      H.Z. Jiao, A.X. Wu, H.J. Wang, X.H. Liu, S.K. Yang, and Y.T. Xiao, Experiment study on the flocculation settlement characteristic of unclassified tailings, J. Univ. Sci. Technol. Beijing, 33(2011), No. 12, p. 1437.
      [22]
      R.K. Dwari, S.I. Angadi, and S.K. Tripathy, Studies on flocculation characteristics of chromite’s ore process tailing: Effect of flocculants ionicity and molecular mass, Colloids Surf. A, 537(2018), p. 467. doi: 10.1016/j.colsurfa.2017.10.069
      [23]
      J.W. Bian, X.M. Wang, and C.C. Xiao, Experimental study on dynamic flocculating sedimentation of unclassified tailings, J. Cent. South Univ. Sci. Technol., 48(2017), No. 12, p. 3278.
      [24]
      P. Ofori, A.V. Nguyen, B. Firth, C. McNally, and O. Ozdemir, Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings, Chem. Eng. J., 172(2011), No. 2-3, p. 914. doi: 10.1016/j.cej.2011.06.082
      [25]
      G. Many, X. Durrieu de Madron, R. Verney, F. Bourrin, P.R. Renosh, F. Jourdin, and A. Gangloff, Geometry, fractal dimension and settling velocity of flocs during flooding conditions in the Rhône ROFI, Estuarine Coastal Shelf Sci., 219(2019), p. 1. doi: 10.1016/j.ecss.2019.01.017
      [26]
      G.R. Quezada, J. Ramos, R.I. Jeldres, P. Robles, and P.G. Toledo, Analysis of the flocculation process of fine tailings particles in saltwater through a population balance model, Sep. Purif. Technol., 237(2020), art. No. 116319. doi: 10.1016/j.seppur.2019.116319
      [27]
      H.Z. Hou, C.P. Li, S.Y. Wang, and B.H. Yan, Study on the mesostructure of compacted area in total tailings thickening, Met. Mine, 2019, No. 3, p. 73.
      [28]
      Y.X. Liu, X.S. Dong, Y.P. Fan, X.M. Ma, and M. Chang, Floc characteristics and sedimentation effected by particle size, China Powder Sci. Technol., 23(2017), No. 5, p. 59.
      [29]
      F.S. Niu, X.L. Zhang, J.X. Zhang, and Z.L. Li, Influence of starch on flocculation characteristics and mechanism of hematite, Min. Metall. Eng., 36(2016), No. 6, p. 30.
      [30]
      C.Y. Xu and P. Dong, A dynamic model for coastal mud flocs with distributed fractal dimension, J. Coastal Res., 33(2017), No. 1, p. 218.
      [31]
      H.Z. Jiao, S.F. Wang, A.X. Wu, Y.M. Wang, and Y.X. Yang, Shear evolution and connected mechanism of pore structure in thickening bed of paste, J. Cent. South Univ. Sci. Technol., 50(2019), No. 5, p. 1173.
      [32]
      G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Analysis of internal structure behavior of fiber reinforced cement-tailings matrix composites through X-ray computed tomography, Composites Part B, 175(2019), art. No. 107091. doi: 10.1016/j.compositesb.2019.107091
      [33]
      C.L. Lin, A.R. Videla, Q. Yu, and J.D. Miller, Characterization and analysis of porous, brittle solid structures by X-ray micro computed tomography, JOM, 62(2010), No. 12, p. 86. doi: 10.1007/s11837-010-0188-2
      [34]
      Y. Wang, C.L. Lin, and J.D. Miller, Improved 3D image segmentation for X-ray tomographic analysis of packed particle beds, Miner. Eng., 83(2015), p. 185. doi: 10.1016/j.mineng.2015.09.007
      [35]
      S. Sharma, C.L. Lin, and J.D. Miller, Multi-scale features including water content of polymer induced kaolinite floc structures, Miner. Eng., 101(2017), p. 20. doi: 10.1016/j.mineng.2016.11.003
      [36]
      W.J. Zhang, R.N. Song, B.D. Cao, X.F. Yang, D.S. Wang, X.M. Fu, and Y. Song, Variations of floc morphology and extracellular organic matters (EOM) in relation to floc filterability under algae flocculation harvesting using polymeric titanium coagulants (PTCs), Bioresour. Technol., 256(2018), p. 350. doi: 10.1016/j.biortech.2018.02.011
      [37]
      J.H. Du, R.A. Pushkarova, and R.S.C. Smart, A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes, Int. J. Miner. Process., 93(2009), No. 1, p. 66. doi: 10.1016/j.minpro.2009.06.004
      [38]
      A.R. Heath, P.A. Bahri, P.D. Fawell, and J.B. Farrow, Polymer flocculation of calcite: Relating the aggregate size to the settling rate, AIChE J., 52(2006), No. 6, p. 1987. doi: 10.1002/aic.10789
      [39]
      A. Costine, J. Cox, S. Travaglini, A. Lubansky, P. Fawell, and H. Misslitz, Variations in the molecular weight response of anionic polyacrylamides under different flocculation conditions, Chem. Eng. Sci., 176(2018), p. 127. doi: 10.1016/j.ces.2017.10.031
      [40]
      M. Jeldres, E.C. Piceros, N. Toro, D. Torres, P. Robles, W.H. Leiva, and R.I. Jeldres, Copper tailing flocculation in seawater: Relating the yield stress with fractal aggregates at varied mixing conditions, Metals, 9(2019), No. 12, art. No. 1295. doi: 10.3390/met9121295
      [41]
      M.A. Ramírez-Ortegón, E.A. Duéñez-Guzmán, R. Rojas, and E. Cuevas, Unsupervised measures for parameter selection of binarization algorithms, Pattern Recognit., 44(2011), No. 3, p. 491. doi: 10.1016/j.patcog.2010.09.018

    Catalog


    • /

      返回文章
      返回