留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  5335
  • HTML全文浏览量:  1772
  • PDF下载量:  79
  • 被引次数: 0
Shenxu Bao, Yongpeng Luo,  and Yimin Zhang, Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 177-184. https://doi.org/10.1007/s12613-020-2182-1
Cite this article as:
Shenxu Bao, Yongpeng Luo,  and Yimin Zhang, Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 177-184. https://doi.org/10.1007/s12613-020-2182-1
引用本文 PDF XML SpringerLink
研究论文

富硅钒尾矿热活化及改性制备绿色环保“一体化”地聚合物

  • 通讯作者:

    包申旭    E-mail: sxbao@whut.edu.cn

文章亮点

  • (1) 开发了以钒尾矿为主要原料的“一体化”地聚合物。
  • (2) 通过热活化及改性的方式能够将富硅钒尾矿转化为地聚合物前驱体。
  • (3) 煅烧温度是钒尾矿热活化过程的关键因素,对最终地聚合物的性能有较大影响。
  • (4) 地聚合反应所需的碱性环境是由活化后的钒尾矿在水中溶解产生的。
  • (5) 在常温下养护7天,由钒尾矿制备得到的地聚合物抗压强度就能够达到28.9 MPa。
  • 本研究的目的是通过热活化和改性的方式,将富硅钒尾矿制备成地聚合物前驱体。在热活化阶段,钒尾矿和氢氧化钠均匀混合后在高温下煅烧。掺入偏高岭土来调节热活化后钒尾矿的硅铝比例,并得到地聚合物前驱体。结合TG-DSC,SEM,XRD以及活化钒尾矿浸出试验结果发现,在热活化过程中,钒尾矿首先被氢氧化钠腐蚀,然后在颗粒表面形成硅酸钠。热活化后的钒尾矿在加水后,钒尾矿颗粒表面的硅酸钠层溶解,释放出硅组分并形成碱性的溶液环境。偏高岭土能够在碱性环境中溶解释放出铝组分,并与先前释放的硅组分发生地质聚合反应。残余未反应的颗粒通过地质聚合过程中产生的凝胶连接,从而紧密的粘结在一起,随后养护硬化成具有优异机械性能的地聚合物产品。本研究能够提高了地聚合物技术在大规模工业现场应用的可行性,能够促进钒尾矿及其他富硅的固体废物的综合利用。

  • Research Article

    Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification

    + Author Affiliations
    • The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing (VT) by thermal activation and modification. For activation, a homogeneous blend of VT and sodium hydroxide was calcinated at an elevated temperature and then modified with metakaolin to produce a geopolymeric precursor. During the thermal activation, the VT was corroded by sodium hydroxide and then sodium silicate formed on the particle surfaces. After water was added, the sodium silicate coating dissolved to release silicon species, which created an alkaline solution environment. The metakaolin then dissolved in the alkaline environment to generate aluminum species, which was followed by geopolymerization. The VT particles were connected by a gel produced during geopolymerization, which yielded a geopolymer with excellent mechanical performance. This investigation not only improves the feasibility of using geopolymer technology for large-scale and in-situ applications, but also promotes the utilization of VT and other silica-rich solid wastes.

    • loading
    • [1]
      R.M. Andrew, Global CO2 emissions from cement production, 1928–2018, Earth Syst. Sci. Data, 11(2019), No. 4, p. 1675. doi: 10.5194/essd-11-1675-2019
      [2]
      A. Hasanbeigi, L. Price, H.Y. Lu, and W. Lan, Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants, Energy, 35(2010), No. 8, p. 3461. doi: 10.1016/j.energy.2010.04.046
      [3]
      M.C.G. Juenger, F. Winnefeld, J.L. Provis, and J.H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res, 41(2011), No. 12, p. 1232. doi: 10.1016/j.cemconres.2010.11.012
      [4]
      C.J. Shi, A.F. Jiménez, and A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement, Cem. Concr. Res, 41(2011), No. 7, p. 750. doi: 10.1016/j.cemconres.2011.03.016
      [5]
      A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers, Int. J. Miner. Metall. Mater, 26(2019), No. 5, p. 555. doi: 10.1007/s12613-019-1764-2
      [6]
      B.C. McLellan, R.P. Williams, J. Lay, A. van Riessen, and G.D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement, J. Cleaner Prod, 19(2011), No. 9-10, p. 1080. doi: 10.1016/j.jclepro.2011.02.010
      [7]
      A. Mellado, C. Catalán, N. Bouzón, M.V. Borrachero, J.M. Monzó, and J. Payá, Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route, RSC Adv, 4(2014), No. 45, p. 23846. doi: 10.1039/C4RA03375B
      [8]
      C.C.S. Chan, D. Thorpe, and M. Islam, An evaluation carbon footprint in fly ash based geopolymer cement and ordinary Portland cement manufacture, [in] 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 2015, p. 254.
      [9]
      X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, and H. Wang, Fly ash-based geopolymer: Clean production, properties and applications, J. Cleaner Prod, 125(2016), p. 253. doi: 10.1016/j.jclepro.2016.03.019
      [10]
      Z. Liu, N.N. Shao, D.M. Wang, J.F. Qin, T.Y. Huang, W. Song, M.X. Lin, J.S. Yuan, and Z. Wang, Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash, Int. J. Miner. Metall. Mater, 21(2014), No. 1, p. 89. doi: 10.1007/s12613-014-0870-4
      [11]
      P. Chindaprasirt, U. Rattanasak, P. Vongvoradit, and S. Jenjirapanya, Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials, Int. J. Miner. Metall. Mater, 19(2012), No. 9, p. 872. doi: 10.1007/s12613-012-0641-z
      [12]
      I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, S. Hamdan, and J.S.J. van Deventer, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos, 45(2014), p. 125. doi: 10.1016/j.cemconcomp.2013.09.006
      [13]
      Y.C. Li, X.B. Min, Y. Ke, D.G. Liu, and C.J. Tang, Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation, Waste Manage, 83(2019), p. 202. doi: 10.1016/j.wasman.2018.11.019
      [14]
      S.N.M. Hairi, G.N.L. Jameson, J.J. Rogers, and K.J.D. MacKenzie, Synthesis and properties of inorganic polymers (geopolymers) derived from Bayer process residue (red mud) and bauxite, J. Mater. Sci, 50(2015), No. 23, p. 7713. doi: 10.1007/s10853-015-9338-9
      [15]
      X. Ren, L.Y. Zhang, D. Ramey, B. Waterman, and S. Ormsby, Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer, J. Mater. Sci, 50(2015), No. 3, p. 1370. doi: 10.1007/s10853-014-8697-y
      [16]
      S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, and R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, J. Cleaner Prod, 185(2018), p. 891. doi: 10.1016/j.jclepro.2018.03.094
      [17]
      K.D.C.E.S. Defáveri, L.F. dos Santos, J.M.F. de Carvalho, R.A.F. Peixoto, and G.J. Brigolini, Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties, Constr. Build. Mater, 220(2019), p. 375. doi: 10.1016/j.conbuildmat.2019.05.181
      [18]
      C. Zhang, L.X. Li, Z.T. Yuan, X.Y. Xu, Z.G. Song, and Y.R. Zhang, Mechanical properties of siderite and hematite from DFT calculation, Miner. Eng, 146(2020), art. No. 106107. doi: 10.1016/j.mineng.2019.106107
      [19]
      P.S. Singh, T. Bastow, and M. Trigg, Structural studies of geopolymers by 29Si and 27Al MAS-NMR, J. Mater. Sci, 40(2005), No. 15, p. 3951. doi: 10.1007/s10853-005-1915-x
      [20]
      P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, and J.S.J. van Deventer, Geopolymer technology: The current state of the art, J. Mater. Sci, 42(2007), No. 9, p. 2917. doi: 10.1007/s10853-006-0637-z
      [21]
      J. Davidovits, Geopolymer Chemistry and Applications, 4th ed., Geopolymer Institute, Saint Quentin, 2015, p. 437.
      [22]
      E.N. Kani, A. Allahverdi, and J.L. Provis, Efflorescence control in geopolymer binders based on natural pozzolan, Cem. Concr. Compos, 34(2012), No. 1, p. 25. doi: 10.1016/j.cemconcomp.2011.07.007
      [23]
      T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen, One-part alkali-activated materials: A review, Cem. Concr. Res, 103(2018), p. 21. doi: 10.1016/j.cemconres.2017.10.001
      [24]
      A. Hajimohammadi, J.L. Provis, and J.S.J. van Deventer, One-part geopolymer mixes from geothermal silica and sodium aluminate, Ind. Eng. Chem. Res, 47(2008), No. 23, p. 9396. doi: 10.1021/ie8006825
      [25]
      P. Sturm, S. Greiser, G.J.G. Gluth, C. Jäger, and H.J.H. Brouwers, Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods, J. Mater. Sci, 50(2015), No. 20, p. 6768. doi: 10.1007/s10853-015-9232-5
      [26]
      C. Ma, G.C. Long, Y. Shi, and Y.J. Xie, Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China, J. Cleaner Prod, 201(2018), p. 636. doi: 10.1016/j.jclepro.2018.08.060
      [27]
      A. Hajimohammadi, T. Ngo, and A. Kashani, Sustainable one-part geopolymer foams with glass fines versus sand as aggregates, Constr. Build. Mater, 171(2018), p. 223. doi: 10.1016/j.conbuildmat.2018.03.120
      [28]
      S.Y. Oderji, B. Chen, M.R. Ahmad, and S.F.A. Shah, Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators, J. Cleaner Prod, 225(2019), p. 1. doi: 10.1016/j.jclepro.2019.03.290
      [29]
      Y.M. Liew, C.Y. Heah, L.Y. Li, N.A. Jaya, M.M.A.B. Abdullah, S.J. Tan, and K. Hussin, Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder, Constr. Build. Mater, 156(2017), p. 9. doi: 10.1016/j.conbuildmat.2017.08.110
      [30]
      D.W. Feng, J.L. Provis, and J.S.J. van Deventer, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc, 95(2012), No. 2, p. 565. doi: 10.1111/j.1551-2916.2011.04925.x
      [31]
      H.A. Abdel-Gawwad and K.A. Khalil, Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement, Constr. Build. Mater, 187(2018), p. 231. doi: 10.1016/j.conbuildmat.2018.07.161
      [32]
      N. Ye, J.K. Yang, S. Liang, Y. Hu, J.P. Hu, B. Xiao, and Q.F. Huang, Synthesis and strength optimization of one-part geopolymer based on red mud, Constr. Build. Mater, 111(2016), p. 317. doi: 10.1016/j.conbuildmat.2016.02.099
      [33]
      M.X. Peng, Z.H. Wang, S.H. Shen, Q.G. Xiao, L.J. Li, Y.C. Tang, and L.L. Hu, Alkali fusion of bentonite to synthesize one-part geopolymeric cements cured at elevated temperature by comparison with two-part ones, Constr. Build. Mater, 130(2017), p. 103. doi: 10.1016/j.conbuildmat.2016.11.010
      [34]
      N.Y. Mostafa, Q. Mohsen, and A. El-maghraby, Characterization of low-purity clays for geopolymer binder formulation, Int. J. Miner. Metall. Mater, 21(2014), No. 6, p. 609. doi: 10.1007/s12613-014-0949-y
      [35]
      J.H. Liu, Y.C. Zhou, A.X. Wu, and H.J. Wang, Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete, Int. J. Miner. Metall. Mater, 26(2019), No. 10, p. 1329. doi: 10.1007/s12613-019-1811-z
      [36]
      Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
      [37]
      B. Chen, S.X. Bao, Y.M. Zhang, and S. Li, A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound, Sep. Purif. Technol, 240(2020), art. No. 116624. doi: 10.1016/j.seppur.2020.116624
      [38]
      J.Y. Xiang, Q.Y. Huang, W. Lv, G.S. Pei, X.W. Lv, and C.G. Bai, Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment, J. Hazard. Mater, 357(2018), p. 128. doi: 10.1016/j.jhazmat.2018.05.064
      [39]
      Y.P. Luo, S.X. Bao, and Y.M. Zhang, Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation, J. Am. Ceram. Soc, 103(2020), No. 2, p. 779. doi: 10.1111/jace.16835
      [40]
      Z.H. Zhang, J.L. Provis, X. Ma, A. Reid, and H. Wang, Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers, Cem. Concr. Compos, 92(2018), p. 165. doi: 10.1016/j.cemconcomp.2018.06.010
      [41]
      M.A. Longhi, Z.H. Zhang, E.D. Rodríguez, A.P. Kirchheim, and H. Wang, Efflorescence of alkali-activated cements (geopolymers) and the impacts on material structures: A critical analysis, Front. Mater, 6(2019), art. No. 89. doi: 10.3389/fmats.2019.00089

    Catalog


    • /

      返回文章
      返回