Cite this article as: |
Adnan I. Khdair and A. Ibrahim, Effect of graphene addition on the physicomechanical and tribological properties of Cu nanocomposites, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 161-167. https://doi.org/10.1007/s12613-020-2183-0 |
Adnan I. Khdair E-mail: akhdair@kau.edu.sa
本文对铜–石墨烯纳米片(GN)纳米复合材料的力学性能和摩擦学性能进行了实验研究。我们采用化学包覆法将银粒子包覆在GNs上,以避免其与铜的反应和金属间相的形成。分析了GN含量对制备的纳米复合材料的结构、力学性能和摩擦学性能的影响。结果表明,化学镀是一种有效避免铜与碳反应和金属间相形成的方法。GNs的加入显著提高了Cu纳米复合材料的力学性能和摩擦学性能。然而,GNs的添加需要谨慎进行,因为在达到一定的阈值后,其机械性能和摩擦学性能会受到负面影响。结果表明,GN含量为0.5vol%时,复合材料的硬度、磨损率和摩擦系数分别比铜纳米复合材料提高了13%、81.9%和49.8%。这些改进的性能是由于降低的晶体尺寸,GNs的存在,以及复合材料成分的均匀分布。
This paper presents an experimental investigation of the mechanical and tribological properties of Cu–graphene nanosheets (GN) nanocomposites. We employed the electroless coating process to coat GNs with Ag particles to avoid its reaction with Cu and the formation of intermetallic phases. We analyzed the effect of GN content on the structural, mechanical, and tribological properties of the produced nanocomposites. Results showed that the electroless coating process is an efficient technique to avoid the reaction between Cu and C and the formation of intermetallic phases. The addition of GNs significantly improves the mechanical and tribological properties of Cu nanocomposites. However, the addition of GNs needs to be done carefully because, after a certain threshold value, the mechanical and tribological properties are negatively affected. The optimum GN content is determined to be 0.5vol%, at which hardness, wear rate, and coefficient of friction are improved by 13%, 81.9%, and 49.8%, respectively, compared with Cu nanocomposites. These improved properties are due to the reduced crystallite size, presence of GNs, and homogenous distribution of the composite constituents.
[1] |
A. Wagih and A. Fathy, Experimental investigation and FE simulation of nano-indentation on Al–Al2O3 nanocomposites, Adv. Powder Technol., 27(2016), No. 2, p. 403. doi: 10.1016/j.apt.2016.01.021
|
[2] |
A. Fathy, O. El-Kady, and M.M.M. Mohammed, Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 46. doi: 10.1016/S1003-6326(15)63577-4
|
[3] |
A. Wagih, A. Fathy, and T.A. Sebaey, Experimental investigation on the compressibility of Al/Al2O3 nanocomposites, Int. J. Mater. Prod. Technol., 52(2016), No. 3/4, art. No. 312. doi: 10.1504/IJMPT.2016.075497
|
[4] |
H.P. Tsui, J.C. Hung, K.L. Wu, J.C. You, and B.H. Yan, Fabrication of a microtool in electrophoretic deposition for electrochemical microdrilling and in situ micropolishing, Mater. Manuf. Process., 26(2011), No. 5, p. 740. doi: 10.1080/10426910903536816
|
[5] |
A. Fathy, A. Wagih, M.A. El-Hamid, A. Hassan, Effect of mechanical milling on the morphologyand structural evaluation of Al–Al2O3 nanocomposite powders, Int. J. Eng., 27(2014), No. 4, p. 625.
|
[6] |
A. Wagih, A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Experimental investigation on strengthening mechanisms in Al–SiC nanocomposites and 3D FE simulation of Vickers indentation, J. Alloys Compd., 752(2018), p. 137. doi: 10.1016/j.jallcom.2018.04.167
|
[7] |
A.M. Sadoun and A. Fathy, Experimental study on tribological properties of Cu–Al2O3 nanocomposite hybridized by graphene nanoplatelets, Ceram. Int., 45(2019), No. 18, p. 24784. doi: 10.1016/j.ceramint.2019.08.220
|
[8] |
A. Wagih and A. Fathy, Experimental investigation and FE simulation of spherical indentation on nano-alumina reinforced copper-matrix composite produced by three different techniques, Adv. Powder Technol., 28(2017), No. 8, p. 1954. doi: 10.1016/j.apt.2017.05.005
|
[9] |
Y.X. Tang, X.M. Yang, R.R. Wang, and M.X. Li, Enhancement of the mechanical properties of graphene–copper composites with graphene-nickel hybrids, Mater. Sci. Eng. A, 599(2014), p. 247. doi: 10.1016/j.msea.2014.01.061
|
[10] |
M.S. Abd-Elwahed and A.F. Meselhy, Experimental investigation on the mechanical, structural and thermal properties of Cu–ZrO2 nanocomposites hybridized by graphene nanoplatelets, Ceram. Int., 46(2020), No. 7, p. 9198. doi: 10.1016/j.ceramint.2019.12.172
|
[11] |
A. Wagih, Mechanical properties of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying, Adv. Powder Technol., 26(2015), No. 1, p. 253. doi: 10.1016/j.apt.2014.10.005
|
[12] |
M.A. Eltaher, A Wagih, A. Melaibari, A. Fathy, and G. Lubineau, Effect of Al2O3 particles on mechanical and tribological properties of Al–Mg dual-matrix nanocomposites, Ceram. Int., 46(2020), No. 5, p. 5779. doi: 10.1016/j.ceramint.2019.11.028
|
[13] |
A. Fathy, A. Wagih, and A. Abu-Oqail, Effect of ZrO2 content on properties of Cu–ZrO2 nanocomposites synthesized by optimized high energy ball milling, Ceram. Int., 45(2019), No. 2, p. 2319. doi: 10.1016/j.ceramint.2018.10.147
|
[14] |
D.G. Kim, G.S. Kim, S.T. Oh, and Y.D. Kim, The initial stage of sintering for the W–Cu nanocomposite powder prepared from W–CuO mixture, Mater. Lett., 58(2004), No. 5, p. 578. doi: 10.1016/j.matlet.2003.07.044
|
[15] |
P.P. Macrí, S. Enzo, N. Cowlam, R. Frattini, G. Principi, and W.X. Hu, Mechanical alloying of immiscible Cu70TM30 alloys (TM = Fe, Co), Philos. Mag. B, 71(1995), No. 2, p. 249. doi: 10.1080/01418639508240309
|
[16] |
A. Fathy, Investigation on microstructure and properties of Cu–ZrO2 nanocomposites synthesized by in situ processing, Mater. Lett., 213(2018), p. 95. doi: 10.1016/j.matlet.2017.11.023
|
[17] |
L.T. Kong and B.X. Liu, Distinct magnetic states of metastable fcc structured Fe and Fe–Cu alloys studied by ab initio calculations, J. Alloys Compd., 414(2006), No. 1-2, p. 36. doi: 10.1016/j.jallcom.2005.07.032
|
[18] |
Z.W. Wu, J.J. Liu, Y. Chen, and L. Meng, Microstructure, mechanical properties and electrical conductivity of Cu–12wt%Fe microcomposite annealed at different temperatures, J. Alloys Compd., 467(2009), No. 1-2, p. 213. doi: 10.1016/j.jallcom.2007.12.020
|
[19] |
L. Qu, E.G. Wang, X.W. Zuo, L. Zhang, and J.C. He, Experiment and simulation on the thermal instability of a heavily deformed Cu–Fe composite, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2532. doi: 10.1016/j.msea.2010.12.015
|
[20] |
M. Shaat, A. Fathy, and A. Wagih, Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals, Mech. Mater., 143(2020), art. No. 103321. doi: 10.1016/j.mechmat.2020.103321
|
[21] |
A.I. Khdair and A. Fathy, Enhanced strength and ductility of Al–SiC nanocomposites synthesized by accumulative roll bonding, J. Mater. Res. Technol., 9(2020), No. 1, p. 478. doi: 10.1016/j.jmrt.2019.10.077
|
[22] |
A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater., 6(2007), No. 3, p. 183. doi: 10.1038/nmat1849
|
[23] |
S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R: Rep., 74(2013), No. 10, p. 281. doi: 10.1016/j.mser.2013.08.001
|
[24] |
A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: A review, Int. Mater. Rev., 62(2017), No. 5, p. 241. doi: 10.1080/09506608.2016.1219481
|
[25] |
K. Chu, X.H. Wang, Y.B. Li, D.J. Huang, Z.R. Geng, X.L. Zhao, H. Liu, and H. Zhang, Thermal properties of graphene/metal composites with aligned graphene, Mater. Des., 140(2018), p. 85. doi: 10.1016/j.matdes.2017.11.048
|
[26] |
K. Chu, F. Wang, X.H. Wang, and D.J. Huang, Anisotropic mechanical properties of graphene/copper composites with aligned graphene, Mater. Sci. Eng. A, 713(2018), p. 269. doi: 10.1016/j.msea.2017.12.080
|
[27] |
K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, and Z.R. Geng, Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene, Composites A: Appl. Sci. Manuf., 109(2018), p. 267. doi: 10.1016/j.compositesa.2018.03.014
|
[28] |
K. Chu, F. Wang, X.H. Wang, Y.B. Li, Z.R. Geng, D.J. Huang, and H. Zhang, Interface design of graphene/copper composites by matrix alloying with titanium, Mater. Des., 144(2018), p. 290. doi: 10.1016/j.matdes.2018.02.038
|
[29] |
A. Wagih, A. Fathy, and A.M. Kabeel, Optimum milling parameters for production of highly uniform metal-matrix nanocomposites with improved mechanical properties, Adv. Powder Technol., 29(2018), No. 10, p. 2527. doi: 10.1016/j.apt.2018.07.004
|
[30] |
P. Scherrer, Estimation of the size and internal structure of colloidal particles by means of Rontgen, N.G.W. Gottingen Math-Pys. Kl., 2(1918), p. 96.
|
[31] |
S.N. Danilchenko, O.G. Kukharenko, C. Moseke, I.Y. Protsenko, L.F. Sukhodub, and B. Sulkio-Cleff, Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening, Cryst. Res. Technol., 37(2002), No. 11, p. 1234. doi: 10.1002/1521-4079(200211)37:11<1234::AID-CRAT1234>3.0.CO;2-X
|
[32] |
A. Tsuzuki, S. Sago, S.I. Hirano, and S. Naka, High temperature and pressure preparation and properties of iron carbides Fe7C3 and Fe3C, J. Mater. Sci., 19(1984), No. 8, p. 2513. doi: 10.1007/BF00550805
|
[33] |
S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe, The relation between ductility and stacking fault energies in Mg and Mg-Y alloys, Acta Mater., 60(2012), No. 6-7, p. 3011. doi: 10.1016/j.actamat.2012.02.006
|
[34] |
A. Wagih, Synthesis of nanocrystalline Al2O3 reinforced Al nanocomposites by high-energy mechanical alloying: Microstructural evolution and mechanical properties, Trans. Indian Inst. Met., 69(2016), No. 4, p. 851. doi: 10.1007/s12666-015-0570-4
|
[35] |
A. Wagih, Effect of Mg addition on mechanical and thermoelectrical properties of Al–Al2O3 nanocomposite, Trans. Nonferrous Met. Soc. China, 26(2016), No. 11, p. 2810. doi: 10.1016/S1003-6326(16)64409-6
|
[36] |
İ. Çelikyürek, N.Ö. Körpe, T. Ölçer, and R. Gürler, Microstructure, properties and wear behaviors of (Ni3Al)p reinforced Cu matrix composites, J. Mater. Sci. Technol., 27(2011), No. 10, p. 937. doi: 10.1016/S1005-0302(11)60167-9
|
[37] |
A. Fathy and A.A. Megahed, Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks, Int. J. Adv. Manuf. Technol., 62(2012), No. 9-12, p. 953. doi: 10.1007/s00170-011-3861-x
|
[38] |
M. Hou, S.H. Guo, L. Yang, J.Y. Gao, J.H. Peng, T. Hu, L. Wang, and X.L. Ye, Fabrication of Fe–Cu matrix diamond composite by microwave hot pressing sintering, Powder Technol., 338(2018), p. 36. doi: 10.1016/j.powtec.2018.06.043
|
[39] |
J.H. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, and D. Brabazon, Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics, Mater. Des., 94(2016), p. 87. doi: 10.1016/j.matdes.2016.01.031
|
[40] |
A. Fathy, O. Elkady, and A. Abu-Oqail, Production and properties of Cu–ZrO2 nanocomposites, J. Compos. Mater., 52(2018), No. 11, p. 1519. doi: 10.1177/0021998317726148
|
[41] |
A. Wagih and A. Fathy, Improving compressibility and thermal properties of Al–Al2O3 nanocomposites using Mg particles, J. Mater. Sci., 53(2018), No. 16, p. 11393. doi: 10.1007/s10853-018-2422-1
|
[42] |
M. Alizadeh and M.M. Aliabadi, Synthesis behavior of nanocrystalline Al–Al2O3 composite during low time mechanical milling process, J. Alloys Compd., 509(2011), No. 15, p. 4978. doi: 10.1016/j.jallcom.2011.01.177
|
[43] |
D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Ponalagusamy, R. Narayanasamy, and V. Iyer, Microstructural observation, consolidation and mechanical behaviour of AA 6061 nanocomposites reinforced by γ-Al2O3 nanoparticles, Adv. Powder Technol., 26(2015), No. 1, p. 139. doi: 10.1016/j.apt.2014.08.016
|
[44] |
K. Chu and C.C. Jia, Enhanced strength in bulk graphene–copper composites, Phys. Status Solidi A, 211(2014), No. 1, p. 184. doi: 10.1002/pssa.201330051
|
[45] |
F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu, and Q. Huang, Effects of graphene content on the microstructure and properties of copper matrix composites, Carbon, 96(2016), p. 836. doi: 10.1016/j.carbon.2015.10.023
|
[46] |
C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T. Rao, and G. Sundararajan, A new electrochemical approach for the synthesis of copper–graphene nanocomposite foils with high hardness, Sci. Rep., 4(2014), art. No. 4049. doi: 10.1038/srep04049
|
[47] |
F. Shehata, A. Fathy, M. Abdelhameed, and S.F. Moustafa, Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing, Mater. Des., 30(2009), No. 7, p. 2756. doi: 10.1016/j.matdes.2008.10.005
|
[48] |
F. Shehata, A. Fathy, M. Abdelhameed, and S.F. Moustafa, Fabrication of copper–alumina nanocomposites by mechano-chemical routes, J. Alloys Compd., 476(2009), No. 1-2, p. 300. doi: 10.1016/j.jallcom.2008.08.065
|
[49] |
M.S. Abd-Elwahed, A. Wagih, and I.M.R. Najjar, Correlation between micro/nano-structure, mechanical and tribological properties of copper–zirconia nanocomposites, Ceram. Int., 46(2020), No. 1, p. 56. doi: 10.1016/j.ceramint.2019.08.230
|
[50] |
W.S. Barakat, A. Wagih, O.A. Elkady, A. Abu-Oqail, A. Fathy, and A. El-Nikhaily, Effect of Al2O3 nanoparticles content and compaction temperature on properties of Al–Al2O3 coated Cu nanocomposites, Composites Part B., 175(2019), art. No. 107140. doi: 10.1016/j.compositesb.2019.107140
|