Cite this article as:

Xian-hu Liu, Fei-hong Wang, Cong-ying Shao, Gang-feng Du, and Bing-qing Yao, Kinetically controlled synthesis of atomically precise Ag nanoclusters for the catalytic reduction of 4-nitrophenol, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1716-1725. https://dx.doi.org/10.1007/s12613-020-2186-x
Xian-hu Liu, Fei-hong Wang, Cong-ying Shao, Gang-feng Du, and Bing-qing Yao, Kinetically controlled synthesis of atomically precise Ag nanoclusters for the catalytic reduction of 4-nitrophenol, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1716-1725. https://dx.doi.org/10.1007/s12613-020-2186-x
引用本文 PDF XML SpringerLink

动力学控制合成原子精确的银纳米团簇及催化还原4-硝基苯酚

Kinetically controlled synthesis of atomically precise Ag nanoclusters for the catalytic reduction of 4-nitrophenol

Abstract: Synthesizing atomically precise Ag nanoclusters (NCs), which is essential for the general development of NCs, is quite challenging. In this study, we report the synthesis of high-purity atomically precise Ag NCs via a kinetically controlled strategy. The Ag NCs were prepared using a mild reducing agent via a one-pot method. The as-prepared Ag NCs were confirmed to be Ag49(D-pen)24 (D-pen: D-penicillamine) on the basis of their matrix-assisted laser desorption ionization time-of-flight mass spectrometric and thermogravimetric characteristics. The interfacial structures of the Ag NCs were illustrated by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The Ag NCs were supported on activated carbon (AC) to form Ag NCs/AC, which displayed excellent activity for the catalytic reduction of 4-nitrophenol with a kinetic reaction rate constant k of 0.21 min−1. Such a high k value indicates that the composite could outperform several previously reported catalysts. Moreover, the catalytic activity of Ag NCs/AC remained nearly constant after six times of recycle, which suggests its excellent stability.

 

/

返回文章
返回