Cite this article as: |
Hongliang Zhao, Jingqi Wang, Fengqin Liu, and Hong Yong Sohn, Flow zone distribution and mixing time in a Peirce–Smith copper converter, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 70-77. https://doi.org/10.1007/s12613-020-2196-8 |
Hong Yong Sohn E-mail: h.y.sohn@utah.edu
铜锍吹炼是铜精矿火法冶炼工艺的关键工序之一,目前全世界85%的冰铜均是采用PS转炉进行吹炼的。铜锍PS转炉吹炼是一个涉及化学反应、传热、传质的复杂的多相流体流动过程,吹炼过程中的流场分布特征、气锍渣分布规律以及物料混合特性对转炉生产率和铜回收率等指标起着重要影响。本文旨在通过可视化的冷态水模型试验模拟研究转炉吹炼高温冶炼过程流域分布和混合特性,进而对吹炼工艺进行优化。基于相似性原理建立了1:5等比例PS转炉冷态试验模型,采用高速摄像技术对吹炼过程的流场进行了动态记录,并基于图像处理技术对气液喷吹过程的流域进行了划分,包括喷吹区、喷溅区、强混合区、弱混合区、死区,并且对不同流域进行了定量化分析。此外,本文提出了一种新的判据,即“浓度稳定混合区波动极值”判据,用于判定不同示踪剂加入方式炉内的混合时间,进而确定了最佳的投料位置为喷吹波回落区,可明显提升转炉吹炼的混合效率。
Peirce–Smith copper converting involves complex multiphase flow and mixing. In this work, the flow zone distribution and mixing time in a Peirce–Smith copper converter were investigated in a 1:5 scaled cold model. Flow field distribution, including dead, splashing, and strong-loop zones, were measured, and a dimensionless equation was established to determine the correlation of the effects of stirring and mixing energy with an error of <5%. Four positions in the bath, namely, injection, splashing, strong-loop, and dead zones, were selected to add a hollow salt powder tracer and measure the mixing time. Injecting a quartz flux through tuyeres or into the backflow point of the splashing wave through a chute was recommended instead of adding it through a crane hopper from the top of the furnace to improve the slag-making reaction.
[1] |
Z.H. Liu and L.G. Xia, The practice of copper matte converting in China, Miner. Process. Extr. Metall., 128(2018), No. 1-2, p. 117.
|
[2] |
P. Taskinen, G. Akdogan, I. Kojo, M. Lahtinen, and A. Jokilaakso, Matte converting in copper smelting, Miner. Process. Extr. Metall., 128(2018), No. 1-2, p. 58.
|
[3] |
Y.A. Korol and S.S. Naboychenko, The tuyere in a protective shell to convert the nickel and copper mattes, Non-ferrous Met., 2018, No. 2, p. 3.
|
[4] |
J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
|
[5] |
J. Ma, Y.P. Song, P. Zhou, W. Cheng, and S.G. Chu, A mathematical approach to submerged horizontal buoyant jet trajectory and a criterion for jet flow patterns, Exp. Therm. Fluid Sci., 92(2018), p. 409. doi: 10.1016/j.expthermflusci.2017.11.011
|
[6] |
J. Vaarno, J. Pitkälä, T. Ahokainen, and A. Jokilaakso, Modelling gas injection of a Peirce–Smith-converter, Appl. Math. Modell., 22(1998), No. 11, p. 907. doi: 10.1016/S0307-904X(98)10036-7
|
[7] |
Q.F. Hou, D.Y. E, and A.B. Yu, Discrete particle modeling of lateral jets into a packed bed and micromechanical analysis of the stability of raceways, AIChE J., 62(2016), No. 12, p. 4240. doi: 10.1002/aic.15358
|
[8] |
D.Y. E, Validation of CFD–DEM model for iron ore reduction at particle level and parametric study, Particuology, 51(2020), p. 163. doi: 10.1016/j.partic.2019.10.008
|
[9] |
D.Y., E, Numerical investigation of mixed layer effect on permeability in a dynamic blast furnace, Eng. Rep., 2(2020), No. 5, art. No. e12166.
|
[10] |
L.M. Wang, S.H. Yin, and A.X. Wu, Visualization of flow behavior in ore-segregated packed beds with fine interlayers, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 900. doi: 10.1007/s12613-020-2059-3
|
[11] |
G.W. Tang, A.K. Silaen, H.J. Yan, Z.X. Cui, Z. Wang, H.B. Wang, K.L. Tang, P. Zhou, and C.Q. Zhou, CFD study of gas-liquid phase interaction inside a submerged lance smelting furnace for copper smelting, [in] Proceedings of 8th International Symposium on High-Temperature Metallurgical Processing, San Diego, 2017, p. 101.
|
[12] |
H. Chen, J. Ma, and H.T. Liu, Least square spectral collocation method for nonlinear heat transfer in moving porous plate with convective and radiative boundary conditions, Int. J. Therm. Sci., 132(2018), p. 335. doi: 10.1016/j.ijthermalsci.2018.06.020
|
[13] |
Y. Xue, F.N. Dang, Z.Z. Cao, F. Du, F. Liu, J. Ren, and F. Gao, Numerical analysis of heat and gas transfer characteristics during heat injection processes based on a thermo-hydro-mechanical model, Energies, 11(2018), No. 7, art. No. 1722. doi: 10.3390/en11071722
|
[14] |
Z. Chen and H.F. Shen, Simulation of macrosegregation in a 36-t steel ingot using a multiphase model, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 200. doi: 10.1007/s12613-019-1875-9
|
[15] |
D.G. Ma, W.Q. Chen, and X.M. Che, Physical modelling of slag splashing in nickel converter, Can. Metall. Q., 51(2012), No. 1, p. 31. doi: 10.1179/1879139511Y.0000000029
|
[16] |
M. Rosales, A. Valencia, and R. Fuentes, A methodology for controlling slopping in copper converters by using lateral and bottom gas injection, Int. J. Chem. React. Eng., 7(2009), No. 1, p. 1.
|
[17] |
A. Valencia, M. Rosales, R. Paredes, C. Leon, and A. Moyano, Numerical and experimental investigation of the fluid dynamics in a Teniente type copper converter, Int. Commun. Heat Mass Transf., 33(2006), No. 3, p. 302. doi: 10.1016/j.icheatmasstransfer.2005.12.009
|
[18] |
H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas−liquid mass transfer and flow phenomena in a Peirce-Smith converter: A numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092. doi: 10.1007/s12613-019-1831-8
|
[19] |
D.K. Chibwe, G. Akdogan, and J. Eksteen, Solid−liquid mass transfer in a Peirce−Smith converter: A physical modelling study, Metall. Min. Ind., 3(2011), No. 5, p. 202.
|
[20] |
D.K. Chibwe, G. Akdogan, P. Taskinen, and J.J. Eksteen, Modelling of fluid flow phenomena in Peirce−Smith copper converters and analysis of combined blowing concept, J. S. Afr. I. Min. Metall., 115(2015), No. 5, p. 363. doi: 10.17159/2411-9717/2015/v115n5a4
|
[21] |
A. Almaraz, C. López, M.A. Barrón, and G. Plascencia, Numerical and physical modeling of turbulence in a Peirce−Smith copper converter, J. Mater. Sci. Eng., 3(2013), No. 7, p. 510.
|
[22] |
D.X. Wang, Y. Liu, Z.M. Zhang, T.A. Zhang, and X.L. Li, PIV measurements on physical models of bottom blown oxygen copper smelting furnace, Can. Metall. Q., 56(2017), No. 2, p. 221. doi: 10.1080/00084433.2017.1310362
|
[23] |
T. Fabritius, P. Kupari, and J. Harkki, Physical modelling of a sidewall-blowing converter, Scand. J. Metall., 30(2001), No. 2, p. 57. doi: 10.1034/j.1600-0692.2001.300201.x
|
[24] |
L. Shui, Z.X. Cui, X.D. Ma, M. Akbar Rhamdhani, A. Nguyen, and B.J. Zhao, Mixing phenomena in a bottom blown copper smelter: A water model study, Metall. Mate. Trans. B, 46(2015), No. 3, p. 1218. doi: 10.1007/s11663-015-0324-z
|
[25] |
X. Zhao, H.L. Zhao, L.F. Zhang, and L.Q. Yang, Gas−liquid mass transfer and flow phenomena in the Peirce–Smith converter: A water model study, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 37. doi: 10.1007/s12613-018-1544-4
|
[26] |
D.K. Chibwe, G. Akdogan, C. Aldrich, and R.H. Eric, CFD modelling of global mixing parameters in a Peirce–Smith converter with comparison to physical modelling, Chem. Prod. Process Model., 6(2011), No. 1, p. 22.
|
[27] |
H. Turkoglu and B. Farouk, Mixing time and liquid circulation rate in steelmaking ladles with vertical gas injection, ISIJ Int., 31(1991), No. 12, p. 1371. doi: 10.2355/isijinternational.31.1371
|
[28] |
H.L. Zhao, P. Yin, L.F. Zhang, and S. Wang, Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1369. doi: 10.1007/s12613-016-1360-7
|
[29] |
G. Ascanio, Mixing time in stirred vessels: A review of experimental techniques, Chinese J. Chem. Eng., 23(2015), No. 7, p. 1065. doi: 10.1016/j.cjche.2014.10.022
|
[30] |
H.L. Zhao, L.F. Zhang, P. Yin, and S. Wang, Bubble motion and gas-liquid mixing in metallurgical reactor with a top submerged lance, Int. J. Chem. React. Eng., 15(2017), No. 3, p. 1.
|
[31] |
M. Shamsuddin and H. Y. Sohn, Constitutive topics in physical chemistry of high-temperature nonferrous metallurgy - A review: Part 1. Sulfide roasting and smelting, JOM, 71(2019), No. 9, p. 3253. doi: 10.1007/s11837-019-03620-7
|
[32] |
I. Bellemans, E. De Wilde, N. Moelans, and K. Verbeken, Metal losses in pyrometallurgical operations - A review, Adv. Colloid. Interface Sci., 255(2018), p. 47. doi: 10.1016/j.cis.2017.08.001
|
[33] |
C.P. Culshaw, A.G. Hunt, and M. Nilmani, Injection of silica flux to a nickel converter through a submerged tuyere, [in] Converting, Fire Refining and Casting: Proceedings of a Symposium Sponsored by the Extraction and Processing Division, Prometallurgical Committee, Francisco, 1993, 79.
|