留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3602
  • HTML全文浏览量:  435
  • PDF下载量:  64
  • 被引次数: 0
Andries Mthisi, Nicholus Malatji, A. Patricia, I. Popoola, and L. Rudolf Kanyane, Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 119-127. https://doi.org/10.1007/s12613-020-2200-3
Cite this article as:
Andries Mthisi, Nicholus Malatji, A. Patricia, I. Popoola, and L. Rudolf Kanyane, Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 119-127. https://doi.org/10.1007/s12613-020-2200-3
引用本文 PDF XML SpringerLink
研究论文

放电等离子烧结Al20Cr20Fe25Ni25Mn10高熵合金的硬度和腐蚀性能研究

  • 通讯作者:

    Andries Mthisi    E-mail: Andriesmthisi@gmail.com

  • 采用放电等离子烧结(SPS)技术在不同温度(800、900和200°C)下保温不同时间(4、8和12 min)合成了Al20Cr20Fe25Ni25Mn10高熵合金(HEA)。通过扫描电子显微镜、能谱仪(EDS)、维氏显微硬度计、极化曲线等对合金的微观结构、显微硬度和腐蚀进行了实验研究。X-射线衍射(XRD)表征了所制备合金的成分。EDS结果显示不论烧结参数如何变化,合金均由原始合金元素组成。XRD、EDS和扫描电子显微镜的结果说明所制备的合金具有球形微观结构,呈现出面心立方结构相,这是基于固溶机制形成的。这表明SPS合金具有HEAs的特征。在1000°C保温 12 min生产的合金显微硬度最高,为HV 447.97,热处理后其硬度降至HV 329.47。同一合金表现出优异的耐腐蚀性能。烧结温度升高,Al20Cr20Fe25Ni25Mn10合金可具有更高的密度、显微硬度和耐腐蚀性。

  • Research Article

    Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion

    + Author Affiliations
    • Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at different temperatures (800, 900, and 1000°C) and holding times (4, 8, and 12 min) to develop a high entropy alloy (HEA). The characteristics of spark plasma-synthesized (SPSed) alloys were experimentally explored through investigation of microstructures, microhardness, and corrosion using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS), Vickers microhardness tester, and potentiodynamic polarization, respectively. X-ray diffraction (XRD) characterization was employed to identify the phases formed on the developed alloys. The EDS results revealed that the alloys consisted of elements selected in this work irrespective of varying sintering parameters. The XRD, EDS, and scanning electron microscopy collectively provided evidence that the fabricated alloys were characterized by globular microstructures exhibiting face-centered cubic phase, which was formed on a basis of solid solution mechanism. This finding implies that the SPSed alloy showed the features of HEAs. The alloy produced at 1000°C and holding time of 12 min portrayed an optimal microhardness of HV 447.97, but the value decreased to HV 329.47 after heat treatment. The same alloy showed an outstanding corrosion resistance performance. The increase in temperature resulted in an Al20Cr20Fe25Ni25Mn10 alloy with superior density, microhardness, and corrosion resistance over the other alloys developed at different parameters.

    • loading
    • [1]
      B.S. Murty, J.W. Yeh, and S. Ranganathan, A brief history of alloys and the birth of high-entropy alloys, [in] High Entropy Alloys, Amsterdam: Elsevier, 2014, p. 1.
      [2]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [3]
      J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat., 31(2006), No. 6, p. 633. doi: 10.3166/acsm.31.633-648
      [4]
      L. Rudolf Kanyane, A. Patricia Popoola, and N. Malatji, Development of spark plasma sintered TiAlSiMoW multicomponent alloy: Microstructural evolution, corrosion and oxidation resistance, Results Phys., 12(2019), p. 1754. doi: 10.1016/j.rinp.2019.01.098
      [5]
      N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Tribological and corrosion properties of laser additive manufactured AlCrFeNiCu high entropy alloy, Mater. Today: Proc., 28(2020), p. 944. doi: 10.1016/j.matpr.2019.12.330
      [6]
      K.K. Alaneme, M.O. Bodunrin, and S.R. Oke, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: A review, J. Mater. Res. Technol., 5(2016), No. 4, p. 384. doi: 10.1016/j.jmrt.2016.03.004
      [7]
      L.C. Tsao, C.S. Chen, and C.P. Chu, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy, Mater. Des. (1980-2015), 36(2012), p. 854.
      [8]
      S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228
      [9]
      Z.Q. Fu, W.P. Chen, H.M. Wen, Z. Chen, and E.J. Lavernia, Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy, J. Alloys Compd., 646(2015), p. 175. doi: 10.1016/j.jallcom.2015.04.238
      [10]
      S.Y. Zhang, X.F. Zhang, Q.S. Lu, P. He, T.S. Lin, and H.Y. Geng, Investigation of melt-spinning speed on the property of Yb0.2Ba0.1Al0.1Ga0.1In0.1La0.05Eu0.05Co3.75Fe0.25Sb12 skutterudites, Mater. Lett., 260(2020), art. No. 126960. doi: 10.1016/j.matlet.2019.126960
      [11]
      S.Y. Zhang, S.W. Xu, H. Gao, Q.S. Lu, T.S. Lin, P. He, and H.Y. Geng, Characterization of multiple-filled skutterudites with high thermoelectric performance, J. Alloys Compd., 814(2020), art. No. 152272. doi: 10.1016/j.jallcom.2019.152272
      [12]
      G. Popescu, M.M. Adrian, I. Csaki, C.A. Popescu, D. Mitrică, S. Vasile, and I. Carcea, Mechanically alloyed high entropy composite, IOP Conf. Ser.: Mater. Sci. Eng., 145(2016), No. 7, art. No. 072007. doi: 10.1088/1757-899X/145/7/072007
      [13]
      S. Varalakshmi, M. Kamaraj, and B.S. Murty, Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying, J. Alloys Compd., 460(2008), No. 1-2, p. 253. doi: 10.1016/j.jallcom.2007.05.104
      [14]
      C.S. Babu, K. Sivaprasad, V. Muthupandi, and J.A. Szpunar, Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying, Procedia Mater. Sci., 5(2014), p. 1020. doi: 10.1016/j.mspro.2014.07.392
      [15]
      S. Riva, S.G.R. Brown, N.P. Lavery, A. Tudball, and K.V. Yusenko, Spark plasma sintering of high entropy alloys, [in] P. Cavaliere, eds., Spark Plasma Sintering of Materials, Springer, Cham, 2019, p. 517.
      [16]
      S. Yadav, K. Biswas, and A. Kumar, Spark plasma sintering of high entropy alloys, [in] P. Cavaliere, eds., Spark Plasma Sintering of Materials, Springer, Cham, 2019, p. 539.
      [17]
      Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects, Mater. Today, 19(2016), No. 6, p. 349. doi: 10.1016/j.mattod.2015.11.026
      [18]
      J.F. Zeng, C.J. Wu, H.P. Peng, Y. Liu, J.H. Wang, and X.P. Su, Microstructure and microhardness of as-cast and 800 ℃ annealed AlxCr0.2Fe0.2Ni0.6–x and Al0.2Cr0.2FeyNi0.6–y alloys, Vacuum, 152(2018), p. 214. doi: 10.1016/j.vacuum.2018.03.035
      [19]
      A. Munitz, L. Meshi, and M.J. Kaufman, Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al–Cr–Fe–Mn–Ni high entropy alloy, Mater. Sci. Eng. A, 689(2017), p. 384. doi: 10.1016/j.msea.2017.02.072
      [20]
      D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, and R. Banerjee, Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys, Scr. Mater., 127(2017), p. 186. doi: 10.1016/j.scriptamat.2016.09.023
      [21]
      A.J. Zhang, J.S. Han, J.H. Meng, B. Su, and D.L. Pen, Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture, Mater. Lett., 181(2016), p. 82. doi: 10.1016/j.matlet.2016.06.014
      [22]
      N. Eißmann, B. Klöden, T. Weißgärber, and B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy, Powder Metall., 60(2017), No. 3, p. 184. doi: 10.1080/00325899.2017.1318480
      [23]
      R.M. German, Coarsening in sintering: Grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems, Crit. Rev. Solid State Mater. Sci., 35(2010), No. 4, p. 263. doi: 10.1080/10408436.2010.525197
      [24]
      S. Wagner, D. Kahraman, H. Kungl, M.J. Hoffmann, C. Schuh, K. Lubitz, H. Murmann-Biesenecker, and J.A. Schmid, Effect of temperature on grain size, phase composition, and electrical properties in the relaxor-ferroelectric-system Pb(Ni1/3Nb2/3)O3–Pb(Zr, Ti)O3, J. Appl. Phys., 98(2005), No. 2, art. No. 024102. doi: 10.1063/1.1968427
      [25]
      S. Kennedy, S. Kumaran, and T. Srinivasa Rao, Microstructure and mechanical properties of γ-TiAl consolidated by spark plasma sintering, Integr. Ferroelectr., 185(2017), No. 1, p. 11. doi: 10.1080/10584587.2017.1370272
      [26]
      A.V. Adedayo, Development processes of globular microstructure, J. Miner. Mater. Charact. Eng., 10(2011), No. 7, p. 651.
      [27]
      A.G. Atkins, Deformation-mechanism maps (the plasticity and creep of metals and ceramics), J. Mech. Work. Technol., 9(1984), No. 2, p. 224. doi: 10.1016/0378-3804(84)90015-9
      [28]
      S. Elkatatny, M.A.H. Gepreel, A. Hamada, K. Nakamura, K. Yamanaka, and A. Chiba, Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy, Mater. Sci. Eng. A, 759(2019), p. 380. doi: 10.1016/j.msea.2019.05.056
      [29]
      M.H. Xiao, J.W. Chen, J.J. Kang, K. Chen, D. Wu, and N. Gao, Effect of heat treatment process on mechanical properties and microstructure of FeAlCoCrNiTi0.5 alloy, AIP Adv., 8(2018), No. 9, art. No. 095322. doi: 10.1063/1.5050434
      [30]
      B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system, J. Alloys Compd., 493(2010), No. 1-2, p. 148. doi: 10.1016/j.jallcom.2009.12.183
      [31]
      Y.P. Wang, B.S. Li, and H.Z. Fu, Solid solution or intermetallics in a high-entropy alloy, Adv. Eng. Mater., 11(2009), No. 8, p. 641. doi: 10.1002/adem.200900057
      [32]
      R.B. Li, W.W. Zhang, Y. Zhang, and P.K. Liaw, The effects of phase transformation on the microstructure and mechanical behavior of FeNiMnCr.75Alx high-entropy alloys, Mater. Sci. Eng. A, 725(2018), p. 138. doi: 10.1016/j.msea.2018.04.007
      [33]
      B.J. Babalola, N. Maledi, M.B. Shongwe, M.O. Bodunrin, B.A. Obadele, and P.A. Olubambi, Influence of nanocrystalline nickel powder on oxidation resistance of spark plasma sintered Ni–17Cr6.5Co1.2Mo6Al4W7.6Ta alloy, J. King Saud Univ. Eng. Sci., 32(2020), No. 3, p. 198.
      [34]
      A. Mthisi and A.P.I. Popoola, Influence of Al2O3 addition on the hardness and in vitro corrosion behavior of laser synthesized Ti–Al2O3 coatings on Ti–6Al–4V, Int. J. Adv. Manuf. Technol., 100(2019), No. 1-4, p. 917. doi: 10.1007/s00170-018-2785-0
      [35]
      R.N. Lumley, Fundamentals of aluminium metallurgy: production, processing, and applications, [in] N. Birbilis and B. Hinton, eds., Corrosion and Corrosion Protection of Aluminium, Woodhead Publishing, Oxford, 2011, p. 574.
      [36]
      T.M. Butler and M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys, J. Alloys Compd., 674(2016), p. 229. doi: 10.1016/j.jallcom.2016.02.257
      [37]
      K. Masemola, P. Popoola, and N. Malatji, The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic High entropy alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 5241. doi: 10.1016/j.jmrt.2020.03.050
      [38]
      L.R. Kanyane, N. Malatji, A.P.I. Popoola, and M.B. Shongwe, Evolution of microstructure, mechanical properties, electrochemical behaviour and thermal stability of Ti0.25–Al0.2–Mo0.2–Si0.25W0.1 high entropy alloy fabricated by spark plasma sintering technique, Int. J. Adv. Manuf. Technol., 104(2019), No. 5-8, p. 3163. doi: 10.1007/s00170-019-04185-0

    Catalog


    • /

      返回文章
      返回