留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 3
Mar.  2021

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1498
  • HTML全文浏览量:  314
  • PDF下载量:  66
  • 被引次数: 0
Yong-jin Wang, Shuai Zhao, Ren-bo Song, and Bin Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 422-429. https://doi.org/10.1007/s12613-020-2206-x
Cite this article as:
Yong-jin Wang, Shuai Zhao, Ren-bo Song, and Bin Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, pp. 422-429. https://doi.org/10.1007/s12613-020-2206-x
引用本文 PDF XML SpringerLink
研究论文

Fe–0.3C–9Mn–2Al中锰钢的热塑性行为

  • Research Article

    Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel

    + Author Affiliations
    • The hot ductility of a Fe–0.3C–9Mn–2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator. Hot tensile tests were conducted at different temperatures (600–1300°C) under a constant strain rate of 4 × 10−3 s−1. The fracture behavior and mechanism of hot ductility evolution were discussed. Results showed that the hot ductility decreased as the temperature was decreased from 1000°C. The reduction of area (RA) decreased rapidly in the specimens tested below 700°C, whereas that in the specimen tested at 650°C was lower than 65%. Mixed brittle–ductile fracture feature is reflected by the coexistence of cleavage step, intergranular facet, and dimple at the surface. The fracture belonged to ductile failure in the specimens tested between 720–1000°C. Large and deep dimples could delay crack propagation. The change in average width of the dimples was in positive proportion with the change in RA. The wide austenite–ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel. The formation of ferrite film on austenite grain boundaries led to strain concentration. Yield point elongation occurred at the austenite–ferrite intercritical temperature range during the hot tensile test.

    • loading
    • [1]
      B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029. doi: 10.1126/science.aan0177
      [2]
      P.K. Xia, F. Vercruysse, R. Petrov, I. Sabirov, M. Castillo-Rodríguez, and P. Verleysen, High strain rate tensile behavior of a quenching and partitioning (Q&P) Fe–0.25C–1.5Si–3.0Mn steel, Mater. Sci. Eng. A, 745(2019), p. 53. doi: 10.1016/j.msea.2018.12.064
      [3]
      A. Grajcar, R. Kuziak, and W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., 12(2012), No. 3, p. 334. doi: 10.1016/j.acme.2012.06.011
      [4]
      K. Lu, The future of metals, Science, 328(2010), No. 5976, p. 319. doi: 10.1126/science.1185866
      [5]
      J.W. Zhao and Z.Y. Jiang, Thermomechanical processing of advanced high strength steels, Prog. Mater Sci., 94(2018), p. 174. doi: 10.1016/j.pmatsci.2018.01.006
      [6]
      P. Lan, H.Y. Tang, and J.Q. Zhang, Hot ductility of high alloy Fe–Mn–C austenite TWIP steel, Mater. Sci. Eng. A, 660(2016), p. 127. doi: 10.1016/j.msea.2016.02.086
      [7]
      B.H. Chen and H. Yu, Hot ductility behavior of V–N and V–Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525. doi: 10.1007/s12613-012-0590-6
      [8]
      C.H. Lee, J.Y. Park, J.H. Chung, D.B. Park, J.Y. Jang, S. Huh, S.J. Kim, J.Y. Kang, J. Moon, and T.H. Lee, Hot ductility of medium carbon steel with vanadium, Mater. Sci. Eng. A, 651(2016), p. 192. doi: 10.1016/j.msea.2015.11.006
      [9]
      I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4468. doi: 10.1016/j.msea.2011.02.040
      [10]
      B. Hu, H.W. Luo, F. Yang, and H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1457. doi: 10.1016/j.jmst.2017.06.017
      [11]
      J.T. Benzing, A. Kwiatkowski Da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, and J.E. Wittig, Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel, Acta Mater., 166(2019), p. 512. doi: 10.1016/j.actamat.2019.01.003
      [12]
      D.W. Suh and S.J. Kim, Medium Mn transformation-induced plasticity steels: Recent progress and challenges, Scripta Mater., 126(2017), p. 63. doi: 10.1016/j.scriptamat.2016.07.013
      [13]
      K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39. doi: 10.1016/j.actamat.2017.07.056
      [14]
      J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, and R.D.K. Misra, High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing, J. Mater. Sci., 54(2019), No. 8, p. 6565. doi: 10.1007/s10853-018-03291-w
      [15]
      M.H. Kang, J.S. Lee, Y.M. Koo, S.J. Kim, and N.H. Heo, Correlation between MnS precipitation, sulfur segregation kinetics, and hot ductility in C–Mn steel, Metall. Mater. Trans. A, 45(2014), No. 12, p. 5295. doi: 10.1007/s11661-014-2532-6
      [16]
      Y. Ma, W.W. Song, S.X. Zhou, A. Schwedt, and W. Bleck, Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel, Metals, 8(2018), No. 5, p. 357. doi: 10.3390/met8050357
      [17]
      N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, Difference in transformation behaviour between ferrite and austenite formations in medium manganese steel, Acta Mater., 65(2014), p. 251. doi: 10.1016/j.actamat.2013.10.067
      [18]
      J.Y. Li and G.G. Cheng, Hot ductility of Cr15Mn7Ni4N austenitic stainless steel, J. Mater. Res. Technol., 9(2020), No. 1, p. 52. doi: 10.1016/j.jmrt.2019.10.028
      [19]
      B. G. Thomas, J.K. Brimacombe, and I. V. Samarasekera, The formation of panel cracks in steel ingots: A state-of-the-art review-I. hot ductility of steel, ISS Trans., 7(1986), p. 7.
      [20]
      S.C. Seo, K.S. Son, S.K. Lee, I. Kim, T.J. Lee, C. Yim, and D. Kim, Variation of hot ductility behavior in as-cast and remelted steel slab, Met. Mater. Int., 14(2008), No. 5, p. 559. doi: 10.3365/met.mat.2008.10.559
      [21]
      H.B. Liu, J.H. Liu, B.W. Wu, Y.Z. Shen, Y. He, H. Ding, and X.F. Su, Effect of Mn and Al contents on hot ductility of high alloy Fe–xMn–C–yAl austenite TWIP steels, Mater. Sci. Eng. A, 708(2017), p. 360. doi: 10.1016/j.msea.2017.10.001
      [22]
      G. Sahoo, B. Singh, and A. Saxena, Effect of strain rate, soaking time and alloying elements on hot ductility and hot shortness of low alloy steels, Mater. Sci. Eng. A, 718(2018), p. 292. doi: 10.1016/j.msea.2018.01.084
      [23]
      Z. Lu, H.T. Zhang, and B.R. Wu, Effect of niobium on hot ductility of low C–Mn–steel under continuous casting simulation conditions, Steel Res. Int., 61(1990), No. 12, p. 620. doi: 10.1002/srin.199000418
      [24]
      D.P. Yang, D. Wu, and H.L. Yi, Reverse transformation from martensite into austenite in a medium-Mn steel, Scripta Mater., 161(2019), p. 1. doi: 10.1016/j.scriptamat.2018.09.046
      [25]
      A.S. Hamada and L.P. Karjalainen, Hot ductility behaviour of high-Mn TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1819. doi: 10.1016/j.msea.2010.11.030
      [26]
      J.R. Li, T. He, L.J. Cheng, P.F. Zhang, and L.W. Wang, Effect of precipitates on the hot embrittlement of 11Cr–3Co–3W martensitic heat resistant steel for turbine high temperature stage blades in ultra-supercritical power plants, Mater. Sci. Eng. A, 763(2019), p. 138187. doi: 10.1016/j.msea.2019.138187
      [27]
      T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, and F.S. Pan, A high-ductility Mg–Zn–Ca magnesium alloy, Acta Metall. Sinica Engl. Lett., 32(2019), No. 1, p. 23. doi: 10.1007/s40195-018-0804-7
      [28]
      P.Y. Wen, J.S. Han, H.W. Luo, and X.P. Mao, Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1234. doi: 10.1007/s12613-020-2023-2
      [29]
      H.W. Luo, H. Dong, and M.X. Huang, Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels, Mater. Des., 83(2015), p. 42. doi: 10.1016/j.matdes.2015.05.085
      [30]
      B.C. De Cooman, S.J. Lee, and S. Shin, E.J. Seo, J.G. Speer, Combined intercritical annealing and Q&P processing of medium Mn steel, Metall. Mater. Trans. A, 48(2017), No. 1, p. 39. doi: 10.1007/s11661-016-3821-z
      [31]
      R. Schwab and V. Ruff, On the nature of the yield point phenomenon, Acta. Mater., 61(2013), No. 5, p. 1798. doi: 10.1016/j.actamat.2012.12.003
      [32]
      J.H. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Acta Mater., 78(2014), p. 369. doi: 10.1016/j.actamat.2014.07.005

    Catalog


    • /

      返回文章
      返回