Cite this article as: |
Rong-zhen Liu, Wen-wei Gu, Yu Yang, Yuan Lu, Hong-bin Tan, and Jian-feng Yang, Microstructure and mechanical properties of reaction-bonded B4C–SiC composites, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1828-1835. https://doi.org/10.1007/s12613-020-2207-9 |
Reaction-bonded B4C–SiC composites are highly promising materials for numerous advanced technological applications. However, their microstructure evolution mechanism remains unclear. Herein, B4C–SiC composites were fabricated through the Si-melt infiltration process. The influences of the sintering time and the B4C content on the mechanical properties, microstructure, and phase evolution were investigated. X-ray diffraction results showed the presence of SiC, boron silicon, boron silicon carbide, and boron carbide. Scanning electron microscopy results showed that with the increase in the boron carbide content, the Si content decreased and the unreacted B4C amount increased when the sintering temperature reached 1650°C and the sintering time reached 1 h. The unreacted B4C diminished with increasing sintering time and temperature when B4C content was lower than 35wt%. Further microstructure analysis showed a transition area between B4C and Si, with the C content marginally higher than in the Si area. This indicates that after the silicon infiltration, the diffusion mechanism was the primary sintering mechanism of the composites. As the diffusion process progressed, the hardness increased. The maximum values of the Vickers hardness, flexural strength, and fracture toughness of the reaction-bonded B4C–SiC ceramic composite with 12wt% B4C content sintered at 1600°C for 0.5 h were about HV 2400, 330 MPa, and 5.2 MPa·m0.5, respectively.
[1] |
P.G. Karandikar, S. Wong, G. Evans, and M.K. Aghajanian, Microstructural development and phase changes in reaction bonded boron carbide, [in] J.J. Swab, S. Mathur, and T. Ohji, eds., Advanced Ceramics Armor VI: Ceramic Engineering and Science Proceedings, Vol. 31, John Wiley & Sons, Inc., Hoboken, New Jersey, 2010, p. 251.
|
[2] |
D.D. Nesmelov and S.N. Perevislov, Reaction sintered materials based on boron carbide and silicon carbide (review), Glass Ceram., 71(2015), No. 9-10, p. 313. doi: 10.1007/s10717-015-9677-7
|
[3] |
M.K. Aghajanian, B.N. Morgan, J.R. Singh, J. Mears, and R.A. Wolffe, A new family of reaction bonded ceramics for armor applications, Ceram. Trans., 134(2002), p. 527.
|
[4] |
A.J. Whitehead and T.F. Page, Fabrication and characterization of some novel reaction-bonded silicon carbide materials, J. Mater. Sci., 27(1992), No. 3, p. 839. doi: 10.1007/BF02403904
|
[5] |
K.S. Lee, I.S. Han, Y.H. Chung, S.K. Woo, and S.W. Lee, Hardness and wear resistance of reaction bonded SiC–B4C composite, Mater. Sci. Forum, 486-487(2005), p. 245. doi: 10.4028/www.scientific.net/MSF.486-487.245
|
[6] |
P. Barick, D.C. Jana, and N. Thiyagarajan, Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics, Ceram. Int., 39(2013), No. 1, p. 763. doi: 10.1016/j.ceramint.2012.06.089
|
[7] |
C.P. Zhang, H.Q. Ru, H. Zong, W.K. Sun, J.H. Zhu, W. Wang, and X.Y. Yue, Coarsening of boron carbide grains during the infiltration of porous boron carbide preforms by molten silicon, Ceram. Int., 42(2016), No. 16, p. 18681. doi: 10.1016/j.ceramint.2016.09.006
|
[8] |
H.Y. Wu, M.X. Gao, D. Zhu, S.C. Zhang, Y. Pan, H.G. Pan, Y.F. Liu, F.J. Oliveira, and J.M. Vieira, SiC whisker reinforced multi-carbides composites prepared from B4C and pyrolyzed rice husks via reactive infiltration, Ceram. Int., 38(2012), No. 5, p. 3519. doi: 10.1016/j.ceramint.2011.12.065
|
[9] |
S.W. Fan, L.Y. He, C. Yang, H. Li, S. Wang, Y.G. Lin, B.H. Zou, J.L. Deng, L.T. Zhang, and L.F. Cheng, Effect of B4C on the microstructure and properties of B4C modified three-dimensional needled C/C–SiC composites, Mater. Sci. Eng. A, 706(2017), p. 201. doi: 10.1016/j.msea.2017.09.008
|
[10] |
I.S. Han, K.S. Lee, D.W. Seo, and S.K. Woo, Improvement of mechanical properties in RBSC by boron carbide addition, J. Mater. Sci. Lett., 21(2002), No. 9, p. 703. doi: 10.1023/A:1015780921024
|
[11] |
S. Hayun, N. Frage, and M.P. Dariel, The morphology of ceramic phases in BxC–SiC–Si infiltrated composites, J. Solid State Chem., 179(2006), No. 9, p. 2875. doi: 10.1016/j.jssc.2006.01.031
|
[12] |
S. Hayun, A. Weizmann, M.P. Dariel, and N. Frage, Microstructural evolution during the infiltration of boron carbide with molten silicon, J. Eur. Ceram. Soc., 30(2010), No. 4, p. 1007. doi: 10.1016/j.jeurceramsoc.2009.09.021
|
[13] |
Y.C. Zhou, D.W. Ni, Y.M. Kan, P. He, S.M. Dong, and X.Y. Zhang, Microstructure and mechanical properties of reaction bonded B4C–SiC composites: The effect of polycarbosilane addition, Ceram. Int., 43(2017), No. 8, p. 5887. doi: 10.1016/j.ceramint.2017.01.066
|
[14] |
Y.F. Xu, H.Q. Ru, H.B. Long, J. Zhao, W. Wang, and X.Y. Yue, Gel-cast hierarchical porous B4C/C preform and its role in fabricating reaction bonded boron carbide composites, Ceram. Int., 43(2017), No. 5, p. 4062. doi: 10.1016/j.ceramint.2016.11.193
|
[15] |
S.C. Song, C.G. Bao, and B. Wang, Effect of the addition of carbon fibres on the microstructure and mechanical properties of reaction bonded B4C/SiC composites, J. Eur. Ceram. Soc., 36(2016), No. 8, p. 1905. doi: 10.1016/j.jeurceramsoc.2016.02.048
|
[16] |
T.S. Wang, Y.Y. Zhang, P. Karandikar, and C.Y. Ni, Structural evolution in reaction-bonded silicon carbide and boron carbide composites (RBSBC), Ceram. Int., 44(2018), No. 2, p. 2593. doi: 10.1016/j.ceramint.2017.10.131
|
[17] |
N. Frage, N. Froumin, M. Aizenshtein, and M.P. Dariel, Interface reaction in the B4C/(Cu–Si) system, Acta Mater., 52(2004), No. 9, p. 2625. doi: 10.1016/j.actamat.2004.02.010
|
[18] |
M. Dutto, D. Goeuriot, S. Saunier, S. Marinel, N. Frage, and S. Hayun, Reaction-bonded B4C/SiC composites synthesized by microwave heating, Int. J. Appl. Ceram. Technol., 16(2019), No. 4, p. 1287. doi: 10.1111/ijac.13211
|
[19] |
T.S. Wang, C.Y. Ni, and P. Karandikar, Microstructural characteristics of reaction-bonded B4C/SiC composite, [in] S.J. Ikhmayies, B.W. Li, J.S. Carpenter, J.Y. Hwang, S.N. Monteiro, J. Li, D. Firrao, M.M. Zhang, Z.W. Peng, J.P. Escobedo-Diaz, C.G. Bai, eds., Characterization of Minerals, Metals, and Materials 2016, John Wiley & Sons, Inc., Hoboken, New Jersey, 2016, p. 279.
|
[20] |
R.I. Scace and G.A. Slack, Solubility of carbon in silicon and germanium, J. Chem. Phys., 30(1959), No. 6, p. 1551. doi: 10.1063/1.1730236
|
[21] |
J.N. Ness and T.F. Page, Microstructural evolution in reaction-bonded silicon carbide, J. Mater. Sci., 21(1986), No. 4, p. 1377. doi: 10.1007/BF00553278
|
[22] |
S.M. So, H.W. Hwang, S.H. Yi, J.S. Park, K.H. Kim, K.H. Lee, J. Park, and S.G. Lee, Mechanical properties and electrical resistivity of SiC–TiC composites with nitrate sintering additives, J. Ceram. Process. Res., 21(2020), Special 1, p. s16.
|
[23] |
Z.X. Zhang, X.W. Du, W.M. Wang, Z.Y. Fu, and H. Wang, Preparation of B4C–SiC composite ceramics through hot pressing assisted by mechanical alloying, Int. J. Refract. Met. Hard Mater., 41(2013), p. 270. doi: 10.1016/j.ijrmhm.2013.04.012
|
[24] |
S.M. So, W.H. Choi, K.H. Kim, J.S. Park, M.S. Kim, J. Park, Y.S. Lim, and H.S. Kim, Mechanical properties of B4C–SiC composites fabricated by hot-press sintering, Ceram. Int., 46(2020), No. 7, p. 9575. doi: 10.1016/j.ceramint.2019.12.222
|