Cite this article as:

Yiru Yang, Qipeng Bao, Lei Guo, Zhe Wang, and Zhancheng Guo, Numerical simulation of flash reduction in a drop tube reactor with variable temperatures, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp.228-238. https://dx.doi.org/10.1007/s12613-020-2210-1
Yiru Yang, Qipeng Bao, Lei Guo, Zhe Wang, and Zhancheng Guo, Numerical simulation of flash reduction in a drop tube reactor with variable temperatures, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp.228-238. https://dx.doi.org/10.1007/s12613-020-2210-1
引用本文 PDF XML SpringerLink

变温滴管炉中的闪速还原过程数值模拟

摘要: 闪速炼铁技术FIT被认为是一种很有潜力的绿色炼铁技术。为了准确预测闪速炼铁过程,本文基于实验室规模的高温管式炉构建了包含颗粒反应动力学在内的计算流体动力学(CFD)模型。与此同时,在相同尺寸的滴管炉中进行了对应的闪速还原实验,用以验证CFD模型的准确性。矿石颗粒的还原度被选作模型预测主准确性的关键指标,最终结果表明,数值模拟与实验结果中的还原度吻合较好。本文还利用数值模型进一步研究该过程的影响因素,包括不同粒径(20-110 μm)、峰值温度(1250-1550℃)和还原气氛(H2/CO)。高度随时间的变化表明,小颗粒(50 μm)比大颗粒具有更长的停留时间(3.6 s),在CO气氛中的颗粒停留时间略比长于H2气氛。然而,实验和分析结果均表明,CO中颗粒的还原程度明显低于H2气氛中的还原程度,这是由于在同等条件下,H2还原铁矿石的动力学速率要快于CO还原。数值模拟的结果表明,制备90%以上高还原度颗粒的最佳实验粒度和峰值温度分别为氢气气氛下的50 μm和1350℃,CO气氛下的40 μm和1550℃。

 

Numerical simulation of flash reduction in a drop tube reactor with variable temperatures

Abstract: A computational fluid dynamics (CFD) model was developed to accurately predict the flash reduction process, which is considered an efficient alternative ironmaking process. Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model. The reduction degree of ore particles was selected as a critical indicator of model prediction, and the simulated and experimental results were in good agreement. The influencing factors, including the particle size (20–110 μm), peak temperature (1250–1550°C), and reductive atmosphere (H2/CO), were also investigated. The height variation lines indicated that small particles (50 μm) had a longer residence time (3.6 s) than large particles. CO provided a longer residence time (~1.29 s) than H2 (~1.09 s). However, both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere. The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50 μm and 1350°C in H2 atmosphere, and 40 μm and 1550°C in CO atmosphere, respectively.

 

/

返回文章
返回