Cite this article as:

Jiaojiao Yi, Fuyang Cao, Mingqin Xu, Lin Yang, Lu Wang, and Long Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1231-1236. https://dx.doi.org/10.1007/s12613-020-2214-x
Jiaojiao Yi, Fuyang Cao, Mingqin Xu, Lin Yang, Lu Wang, and Long Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1231-1236. https://dx.doi.org/10.1007/s12613-020-2214-x
引用本文 PDF XML SpringerLink

CrHfNbTaTi和CrHfMoTaTi难熔高熵合金相构成、微观结构及压缩性能

摘要: 随着工业技术的发展,对高温金属材料的需求日益增长。2010年高温高熵合金的提出,为新型高温合金的设计开发提供了新思路,逐渐成为近年来的研究热点。本文基于广泛研究的HfNbTaTiZr高熵合金,通过元素置换设计了CrHfNbTaTi和CrHfMoTaTi难熔高熵合金,对真空电弧炉熔炼条件获得的铸态试样的相构成、微观结构以及压缩性能进行了系统研究。研究结果表明CrHfNbTaTi和CrHfMoTaTi难熔高熵合金均由BCC和Laves相构成;CrHfNbTaTi的屈服强度从HfNbTaTiZr的926 MPa提升至1258 MPa,并且保留优异的塑性(约15.0%的压缩应变)。本文通过表征与分析CrHfNbTaTi和CrHfMoTaTi难熔高熵合金因元素置换而产生的形貌和成分分布的演变,表明类网状的枝晶间形貌有利于难熔高熵合金压缩性能的提升,而由Mo元素参与形成的枝晶被枝晶间壳层松散包裹结构则降低了CrHfMoTaTi难熔高熵合金的屈服强度并增加了它的脆性。

 

Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi

Abstract: New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.

 

/

返回文章
返回