Cite this article as:

Yaoyu Yin, Yanbai Shen, Sikai Zhao, Ang Li, Rui Lu, Cong Han, Baoyu Cui, and Dezhou Wei, Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1295-1303. https://dx.doi.org/10.1007/s12613-020-2215-9
Yaoyu Yin, Yanbai Shen, Sikai Zhao, Ang Li, Rui Lu, Cong Han, Baoyu Cui, and Dezhou Wei, Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp.1295-1303. https://dx.doi.org/10.1007/s12613-020-2215-9
引用本文 PDF XML SpringerLink

Pt掺杂ZnSnO3纳米立方体对ppb级NO2的敏感强化研究

摘要: 采用简易的一步水热法优化合成出不同Pt浓度掺杂的钙钛矿型ZnSnO3纳米立方体(ZSNCs),并利用XRD、SEM、TEM、EDS和XPS等表征手段对所制备材料的晶体结构、微观形貌、表面特性等进行了详细的分析表征。研究发现,所制备的Pt掺杂ZSNCs纳米立方体形貌均一,边长约为 400 nm,引入的Pt以PtO和PtO2的形式均匀负载在ZSNCs纳米立方体的表面上。以所获Pt掺杂ZSNCs纳米立方体为敏感材料制备出气敏元件,并详细研究了其气敏特性。结果表明,Pt掺杂可有效提升ZSNCs纳米立方体对NO2的敏感能力,当Pt掺杂浓度为1%(Pt/Zn摩尔比)时,ZSNCs纳米立方体对NO2具有最佳的气敏特性。在125℃的最佳工作温度下,1% Pt掺杂ZSNCs纳米立方体对500 ppb NO2的灵敏度为16,是未掺杂ZSNCs纳米立方体的11倍,且检测下限低于50 ppb,同时气敏元件也具有优异的稳定性和NO2选择性。结合结构表征和气敏特性测试结果,综合电子敏化和化学敏化效应阐述了Pt掺杂对ZnSnO3纳米立方体NO2敏感性能的增强机理,并建立了气敏反应模型。

 

Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes

Abstract: ZnSnO3 nanocubes (ZSNCs) with various Pt concentrations (i.e., 1at%, 2at%, and 5at%) were synthesized by a simple one-pot hydrothermal method. The microstructures of pure and Pt-doped ZSNCs were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Results showed that the pure ZSNCs have a perovskite structure with a side length of approximately 600 nm; this length was reduced to 400 nm after Pt doping. Following doping, PtOx (PtO and PtO2) nanoparticles with a diameter of approximately 5 nm were uniformly coated on the surface of the ZSNCs. Systematic investigation of the gas-sensing abilities of the nanocubes showed that the Pt-doped ZSNCs have excellent sensing properties toward nitrogen dioxide (NO2) gas in the operating temperature range of 75–175°C. Among the sensors prepared, that based on 1at% Pt-doped ZSNCs exhibited the best response of 16.0 toward 500 ppb NO2 at 125°C; this response is over 11 times higher compared with that of pure ZSNCs. The enhanced NO2 sensing mechanism of the Pt-doped ZSNCs may be attributed to the synergistic effects of catalytic activity and chemical sensitization by Pt doping.

 

/

返回文章
返回