留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1851
  • HTML全文浏览量:  570
  • PDF下载量:  32
  • 被引次数: 0
Yaoyu Yin, Yanbai Shen, Sikai Zhao, Ang Li, Rui Lu, Cong Han, Baoyu Cui, and Dezhou Wei, Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1295-1303. https://doi.org/10.1007/s12613-020-2215-9
Cite this article as:
Yaoyu Yin, Yanbai Shen, Sikai Zhao, Ang Li, Rui Lu, Cong Han, Baoyu Cui, and Dezhou Wei, Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1295-1303. https://doi.org/10.1007/s12613-020-2215-9
引用本文 PDF XML SpringerLink
研究论文

Pt掺杂ZnSnO3纳米立方体对ppb级NO2的敏感强化研究

  • 通讯作者:

    沈岩柏    E-mail: shenyanbai@mail.neu.edu.cn

    赵思凯    E-mail: zhaosikai@mail.neu.edu.cn

文章亮点

  • (1) 通过一步水热法优化制备出Pt掺杂的钙钛矿型ZnSnO3纳米立方体。
  • (2) Pt掺杂显著提高了ZnSnO3纳米立方体对NO2的敏感性能,实现了对ppb级NO2的高效检测。
  • (3) 综合电子敏化和化学敏化效应,阐述了Pt掺杂对ZnSnO3纳米立方体NO2敏感性能的增强机理。
  • 采用简易的一步水热法优化合成出不同Pt浓度掺杂的钙钛矿型ZnSnO3纳米立方体(ZSNCs),并利用XRD、SEM、TEM、EDS和XPS等表征手段对所制备材料的晶体结构、微观形貌、表面特性等进行了详细的分析表征。研究发现,所制备的Pt掺杂ZSNCs纳米立方体形貌均一,边长约为 400 nm,引入的Pt以PtO和PtO2的形式均匀负载在ZSNCs纳米立方体的表面上。以所获Pt掺杂ZSNCs纳米立方体为敏感材料制备出气敏元件,并详细研究了其气敏特性。结果表明,Pt掺杂可有效提升ZSNCs纳米立方体对NO2的敏感能力,当Pt掺杂浓度为1%(Pt/Zn摩尔比)时,ZSNCs纳米立方体对NO2具有最佳的气敏特性。在125℃的最佳工作温度下,1% Pt掺杂ZSNCs纳米立方体对500 ppb NO2的灵敏度为16,是未掺杂ZSNCs纳米立方体的11倍,且检测下限低于50 ppb,同时气敏元件也具有优异的稳定性和NO2选择性。结合结构表征和气敏特性测试结果,综合电子敏化和化学敏化效应阐述了Pt掺杂对ZnSnO3纳米立方体NO2敏感性能的增强机理,并建立了气敏反应模型。
  • Research Article

    Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes

    + Author Affiliations
    • ZnSnO3 nanocubes (ZSNCs) with various Pt concentrations (i.e., 1at%, 2at%, and 5at%) were synthesized by a simple one-pot hydrothermal method. The microstructures of pure and Pt-doped ZSNCs were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Results showed that the pure ZSNCs have a perovskite structure with a side length of approximately 600 nm; this length was reduced to 400 nm after Pt doping. Following doping, PtOx (PtO and PtO2) nanoparticles with a diameter of approximately 5 nm were uniformly coated on the surface of the ZSNCs. Systematic investigation of the gas-sensing abilities of the nanocubes showed that the Pt-doped ZSNCs have excellent sensing properties toward nitrogen dioxide (NO2) gas in the operating temperature range of 75–175°C. Among the sensors prepared, that based on 1at% Pt-doped ZSNCs exhibited the best response of 16.0 toward 500 ppb NO2 at 125°C; this response is over 11 times higher compared with that of pure ZSNCs. The enhanced NO2 sensing mechanism of the Pt-doped ZSNCs may be attributed to the synergistic effects of catalytic activity and chemical sensitization by Pt doping.
    • loading
    • [1]
      G.D. Li, Y.B. Shen, P.F. Zhou, F.L. Hao, P. Fang, D.Z. Wei, D. Meng, and X.G. San, Design and application of highly responsive and selective rGO–SnO2 nanocomposites for NO2 monitoring, Mater. Charact., 163(2020), art. No. 110284. doi: 10.1016/j.matchar.2020.110284
      [2]
      S. Jain, A. Paliwal, V. Gupta, and M. Tomar, Long Range Surface Plasmons assisted highly sensitive and room temperature operated NO2 gas sensor, Sens. Actuat. B Chem., 311(2020), art. No. 127897. doi: 10.1016/j.snb.2020.127897
      [3]
      Y. Ogen, Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality, Sci. Total. Environ., 726(2020), art. No. 138605. doi: 10.1016/j.scitotenv.2020.138605
      [4]
      W. Liu, L. Xu, K. Sheng, C. Chen, X.Y. Zhou, B. Dong, X. Bai, S. Zhang, G.Y. Lu, and H.W. Song, APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment, J. Mater. Chem. A, 6(2018), No. 23, p. 10976. doi: 10.1039/C8TA02452A
      [5]
      P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, and L. Syrová, Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte, Sens. Actuat. B Chem., 209(2015), p. 1084. doi: 10.1016/j.snb.2014.12.116
      [6]
      O. Worsfold, C. Malins, M.G. Forkan, I.R. Peterson, B.D. MacCraith, and D.J. Walton, Optical NO2 sensing based on sol–gel entrapped azobenzene dyes, Sens. Actuat. B Chem., 56(1999), No. 1-2, p. 15. doi: 10.1016/S0925-4005(99)00021-0
      [7]
      J. Zhao, T.L. Yang, Y.P. Liu, Z.Y. Wang, X.W. Li, Y.F. Sun, Y. Du, Y.C. Li, and G.Y. Lu, Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3, Sens. Actuat. B Chem., 191(2014), p. 806. doi: 10.1016/j.snb.2013.09.118
      [8]
      S.K. Zhao, Y.B. Shen, P.F. Zhou, J. Zhang, W. Zhang, X.X. Chen, D.Z. Wei, P. Fang, and Y.S. Shen, Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating, Ceram. Int., 44(2018), No. 1, p. 753. doi: 10.1016/j.ceramint.2017.09.243
      [9]
      J. van den Broek, S. Abegg, S.E. Pratsinis, and A.T. Güntner, Highly selective detection of methanol over ethanol by a handheld gas sensor, Nat. Commun., 10(2019), art. No. 4220. doi: 10.1038/s41467-019-12223-4
      [10]
      J.M. Smulko, M. Trawka, C.G. Granqvist, R. Ionescu, F. Annanouch, E. Llobet, and L.B. Kish, New approaches for improving selectivity and sensitivity of resistive gas sensors: A review, Sens. Rev., 35(2015), No. 4, p. 340. doi: 10.1108/SR-12-2014-0747
      [11]
      Y.J. Kwon, S.Y. Kang, P. Wu, Y. Peng, S.S. Kim, and H.W. Kim, Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation, ACS Appl. Mater. Interfaces, 8(2016), No. 21, p. 13646. doi: 10.1021/acsami.6b01619
      [12]
      R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: A review, Nano Micro Lett., 7(2015), No. 2, p. 97. doi: 10.1007/s40820-014-0023-3
      [13]
      J. Zeng, M. Hu, W.D. Wang, H.Q. Chen, and Y.X. Qin, NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film, Sens. Actuat. B Chem., 161(2012), No. 1, p. 447. doi: 10.1016/j.snb.2011.10.059
      [14]
      Y.B. Shen, X.X. Zhong, J. Zhang, T.T. Li, S.K. Zhao, B.Y. Cui, D.Z. Wei, Y.H. Zhang, and K.F. Wei, In-situ growth of mesoporous In2O3 nanorod arrays on a porous ceramic substrate for ppb-level NO2 detection at room temperature, Appl. Surf. Sci., 498(2019), art. No. 143873. doi: 10.1016/j.apsusc.2019.143873
      [15]
      Y.Y. Yin, Y.B. Shen, P.F. Zhou, R. Lu, A. Li, S.K. Zhao, W.G. Liu, D.Z. Wei, and K.F. Wei, Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor, Appl. Surf. Sci., 509(2020), art. No. 145335. doi: 10.1016/j.apsusc.2020.145335
      [16]
      W. Wei, S.J. Guo, C. Chen, L. Sun, Y. Chen, W.B. Guo, and S.P. Ruan, High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers, J. Alloys Compd., 695(2017), p. 1122. doi: 10.1016/j.jallcom.2016.10.238
      [17]
      G.H. Jain, L.A. Patil, M.S. Wagh, D.R. Patil, S.A. Patil, and D.P. Amalnerkar, Surface modified BaTiO3 thick film resistors as H2S gas sensors, Sens. Actuat. B Chem., 117(2006), No. 1, p. 159. doi: 10.1016/j.snb.2005.11.031
      [18]
      D. Zhang, Y.Q. Zhang, Y. Fan, N. Luo, Z.X. Cheng, and J.Q. Xu, Micro-spherical ZnSnO3 material prepared by microwave-assisted method and its ethanol sensing properties, Chin. Chem. Lett., 31(2020), No. 8, p. 2087. doi: 10.1016/j.cclet.2020.01.004
      [19]
      T.T. Zhou, T. Zhang, R. Zhang, J.N. Deng, Z. Lou, G.Y. Lu, and L.L. Wang, Highly sensitive sensing platform based on ZnSnO3 hollow cubes for detection of ethanol, Appl. Surf. Sci., 400(2017), p. 262. doi: 10.1016/j.apsusc.2016.12.183
      [20]
      Q. Chen, S.Y. Ma, H.Y. Jiao, G.H. Zhang, H. Chen, X.L. Xu, H.M. Yang, and Z. Qiang, Synthesis of novel ZnSnO3 hollow polyhedrons with open nanoholes: Enhanced acetone-sensing performance, Ceram. Int., 43(2017), No. 1, p. 1617. doi: 10.1016/j.ceramint.2016.10.094
      [21]
      X.X. Chen, Y.B. Shen, P.F. Zhou, S.K. Zhao, X.X. Zhong, T.T. Li, C. Han, D.Z. Wei, and D. Meng, NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization, Sens. Actuat. B Chem., 280(2019), p. 151. doi: 10.1016/j.snb.2018.10.063
      [22]
      Z. Shen, X.D. Zhang, R.N. Mi, M. Liu, Y. Chen, C. Chen, and S.P. Ruan, On the high response towards TEA of gas sensors based on Ag-loaded 3D porous ZnO microspheres, Sens. Actuat. B Chem., 270(2018), p. 492. doi: 10.1016/j.snb.2018.05.034
      [23]
      S.D. Zhang, M.J. Yang, K.Y. Liang, A. Turak, B.X. Zhang, D. Meng, C.X. Wang, F.D. Qu, W.L. Cheng, and M.H. Yang, An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes, Sens. Actuat. B Chem., 290(2019), p. 59. doi: 10.1016/j.snb.2019.03.082
      [24]
      Y.B. Shen, H.S. Bi, T.T. Li, X.X. Zhong, X.X. Chen, A.F. Fan, and D.Z. Wei, Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure, Appl. Surf. Sci., 434(2018), p. 922. doi: 10.1016/j.apsusc.2017.11.046
      [25]
      B.X. Yang, J.Y. Liu, H. Qin, Q. Liu, X.Y. Jing, H.Q. Zhang, R.M. Li, G.Q. Huang, and J. Wang, PtO2-nanoparticles functionalized CuO polyhedrons for n-butanol gas sensor application, Ceram. Int., 44(2018), No. 9, p. 10426. doi: 10.1016/j.ceramint.2018.03.059
      [26]
      Y.B. Shen, T. Yamazaki, Z.F. Liu, D. Meng, and T. Kikuta, Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires, J. Alloys Compd., 488(2009), No. 1, p. L21. doi: 10.1016/j.jallcom.2009.08.124
      [27]
      L. Giancaterini, C. Cantalini, M. Cittadini, M. Sturaro, M. Guglielmi, A. Martucci, A. Resmini, and U. Anselmi-Tamburini, Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol–gel-based ZnO thin-film sensors, IEEE Sens. J., 15(2015), No. 2, p. 1068. doi: 10.1109/JSEN.2014.2356252
      [28]
      A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, and G. Neri, A novel gas sensor based on Ag/Fe2O3 core–shell nanocomposites, Ceram. Int., 42(2016), No. 16, p. 18974. doi: 10.1016/j.ceramint.2016.09.052
      [29]
      J.S. Lee, A. Katoch, J.H. Kim, and S.S. Kim, Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires, Sens. Actuat. B Chem., 222(2016), p. 307. doi: 10.1016/j.snb.2015.08.037
      [30]
      A.A. Mane, M.P. Suryawanshi, J.H. Kim, and A.V. Moholkar, Superior selectivity and enhanced response characteristics of palladium sensitized vanadium pentoxide nanorods for detection of nitrogen dioxide gas, J. Colloid Interface Sci., 495(2017), p. 53. doi: 10.1016/j.jcis.2017.01.120
      [31]
      H. Liu, Y.H. Xu, X. Zhang, W.R. Zhao, A.J. Ming, and F. Wei, Enhanced NO2 sensing properties of Pt/WO3 films grown by glancing angle deposition, Ceram. Int., 46(2020), No. 13, p. 21388. doi: 10.1016/j.ceramint.2020.05.236
      [32]
      K. Inyawilert, D. Channei, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Pt-doped In2O3 nanoparticles prepared by flame spray pyrolysis for NO2 sensing, J. Nanopart. Res., 18(2016), No. 2, p. 40. doi: 10.1007/s11051-016-3341-1
      [33]
      C. Kamble, M. Panse, and A. Nimbalkar, Ag decorated WO3 sensor for the detection of sub-ppm level NO2 concentration in air, Mater. Sci. Semicond. Process., 103(2019), art. No. 104613. doi: 10.1016/j.mssp.2019.104613
      [34]
      D.V. Ponnuvelu, B. Pullithadathil, A.K. Prasad, S. Dhara, K. Mohamed, A.K. Tyagi, and B. Raj, Highly sensitive, atmospheric pressure operatable sensor based on Au nanoclusters decorated TiO2@Au heterojunction nanorods for trace level NO2 gas detection, J. Mater. Sci. Mater. Electron., 28(2017), No. 13, p. 9738. doi: 10.1007/s10854-017-6725-9
      [35]
      A.A. Mane and A.V. Moholkar, Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection, Solid State Electron., 139(2018), p. 21. doi: 10.1016/j.sse.2017.09.011
      [36]
      X.X. Chen, Y.B. Shen, X.X. Zhong, T.T. Li, S.K. Zhao, P.F. Zhou, C. Han, D.Z. Wei, and Y.S. Shen, Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one-pot method and their enhanced NO2 sensing properties, J. Alloys Compd., 783(2019), p. 503. doi: 10.1016/j.jallcom.2019.01.001
      [37]
      S.K. Zhao, Y.B. Shen, P.F. Zhou, X.X. Zhong, C. Han, Q. Zhao, and D.Z. Wei, Design of Au@WO3 core−shell structured nanospheres for ppb-level NO2 sensing, Sens. Actuat. B Chem., 282(2019), p. 917. doi: 10.1016/j.snb.2018.11.142
      [38]
      S. Thirumalairajan, K. Girija, V.R. Mastelaro, and N. Ponpandian, Surface morphology-dependent room-temperature LaFeO3 nanostructure thin films as selective NO2 gas sensor prepared by radio frequency magnetron sputtering, ACS Appl. Mater. Interfaces, 6(2014), No. 16, p. 13917. doi: 10.1021/am503318y
      [39]
      L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, and T. Yu, Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism, J. Phys. Chem. C, 112(2008), No. 24, p. 9061. doi: 10.1021/jp7117778
      [40]
      S.J. Chang, W.Y. Weng, C.L. Hsu, and T.J. Hsueh, High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles, Nano Commun. Netw., 1(2010), No. 4, p. 283. doi: 10.1016/j.nancom.2010.09.005
      [41]
      N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuat. B Chem., 5(1991), No. 1-4, p. 7. doi: 10.1016/0925-4005(91)80213-4
      [42]
      S.K. Zhao, Y.B. Shen, P.F. Zhou, F.L. Hao, X.Y. Xu, S.L. Gao, D.Z. Wei, Y.X. Ao, and Y.S. Shen, Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles, Sens. Actuat. B Chem., 308(2020), art. No. 127729. doi: 10.1016/j.snb.2020.127729

    Catalog


    • /

      返回文章
      返回